科目:高中數(shù)學 來源:2014屆山西省高三第一次四校聯(lián)考理數(shù)學卷(解析版) 題型:解答題
設橢圓的左焦點為,離心率為,過點且與軸垂直的直線被橢圓截得的線段長為.
(1) 求橢圓方程.
(2) 過點的直線與橢圓交于不同的兩點,當面積最大時,求.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆山東冠縣武訓高中高二下學期模塊考試文科數(shù)學試卷(解析版) 題型:解答題
已知為橢圓的左、右焦點,是坐標原點,過作垂直于軸的直線交橢圓于.
(Ⅰ)求橢圓的方程;
(Ⅱ)過左焦點的直線與橢圓交于、兩點,若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年甘肅省高三上學期期末考試理科數(shù)學試卷 題型:解答題
(本題滿分12分)設、分別是橢圓的左、右焦點.
(1)若是該橢圓上的一個動點,求的最大值和最小值;
(2)設過定點的直線與橢圓交于不同的兩點、,且∠為銳角(其中為坐標原點),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011年湖南省校高二下學期1月份聯(lián)考數(shù)學理卷 題型:解答題
((本小題滿分13分)
已知橢圓,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切。
(1)求橢圓C的方程;
(2)設軸對稱的任意兩個不同的點,連結交橢圓
于另一點,證明:直線與x軸相交于定點;
(3)在(2)的條件下,過點的直線與橢圓交于、兩點,求的取值
范圍。
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年云南省高三1月月考數(shù)學理卷 題型:解答題
((本小題滿分12分)
已知橢圓的一個焦點與拋物線的焦點重合,且橢圓短軸的兩個端點與構成正三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點的直線與橢圓交于不同兩點,試問在軸上是否存在定點,使恒為定值? 若存在,求出的坐標及定值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com