在二項式定理這節(jié)教材中有這樣一個性質(zhì):Cn0+Cn1+Cn2+Cn3+…Cnn=2n,n∈N
(1)計算1•C30+2•C31+3•C32+4•C33的值方法如下:
設(shè)S=1•C30+2•C31+3•C32+4•C33又S=4•C33+3•C32+2•C31+1•C30
相加得2S=5•C30+5•C31+5•C32+5•C33即2S=5•23
所以2S=5•22=20利用類似方法求值:1•C20+2•C21+3•C22,1•C40+2•C41+3•C42+4•C43+5•C44
(2)將(1)的情況推廣到一般的結(jié)論,并給予證明
(3)設(shè)Sn是首項為a1,公比為q的等比數(shù)列{an}的前n項的和,求S1Cn0+S2Cn1+S3Cn2+S4Cn3+…+Sn+1Cnn,n∈N.

解:(1)設(shè)S=1•C20+2•C21+3•C22又S=3•C22+2•C21+1•C20
相加2S=4(C20+C21+C22)=16,S=8
設(shè)S=1•C40+2•C41+3•C42+4•C43+5•C44
又S=5•C44+4•C43+3•C42+2•C41+1•C40
相加2S=6(C30+C41+C42+C43+C44),∴S=3•24=48
(2)1•Cn0+2•Cn1+3•Cn2+…+(n+1)Cnn=(n+2)•2n-1
設(shè)S=1•Cn0+2•Cn1+3•Cn2+…+(n+1)Cnn
又S=(n+1)Cnn+nCnn-1+…+1•Cn0
相加2S=(n+2)(Cn0+Cn1+…+Cnn)∴
(3)當q=1時 Sn=na1S1Cn0+S2Cn1+…+Sn+1Cnn
=a1Cn0+2a1Cn1+…+(n+1)a1Cnn
=a1(1•Cn0+2•Cn1+…+(n+1)Cnn
=a1•(n+2)•2n-1
當q≠1時
S1Cn0+S2Cn1+S3Cn2+…+Sn+1Cnn=
=
=
=
綜上,q=1時 S1Cn0+…+Sn+1Cnn=a1(n+2)•2n-1q≠1時
分析:(1)本題考查的知識點是歸納推理,由S1=1•C10+2•C11=3×20,S2=1•C20+2•C21+3•C22=4×2,S3=1•C30+2•C31+3•C32+4•C33=5×22…我們可得右邊式子的系數(shù)比左邊的項數(shù)多1,右邊式子的底數(shù)均為2,右邊式子的指數(shù)比左邊的項數(shù)少2.故1•C20+2•C21+3•C22=4×2=8,1•C40+2•C41+3•C42+4•C43+5•C44=6×23=48
(2)利用倒序相加的方法,即可求解
(3)分q≠1和q=1時進行討論 當q=1時提取a1后求解和(2)一樣;q≠1時,采取分組求和的方法即可求解
點評:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達的一般性命題(猜想).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在二項式定理這節(jié)教材中有這樣一個性質(zhì):Cn0+Cn1+Cn2+Cn3+…Cnn=2n,n∈N
(1)計算1•C30+2•C31+3•C32+4•C33的值方法如下:
設(shè)S=1•C30+2•C31+3•C32+4•C33又S=4•C33+3•C32+2•C31+1•C30
相加得2S=5•C30+5•C31+5•C32+5•C33即2S=5•23
所以2S=5•22=20利用類似方法求值:1•C20+2•C21+3•C22,1•C40+2•C41+3•C42+4•C43+5•C44
(2)將(1)的情況推廣到一般的結(jié)論,并給予證明
(3)設(shè)Sn是首項為a1,公比為q的等比數(shù)列{an}的前n項的和,求S1Cn0+S2Cn1+S3Cn2+S4Cn3+…+Sn+1Cnn,n∈N.

查看答案和解析>>

科目:高中數(shù)學 來源:2009屆上海市南匯中學高三年級零次月考、數(shù)學試卷 題型:044

在二項式定理這節(jié)教材中有這樣一個性質(zhì):

(1)計算的值方法如下:

設(shè)

相加得即2S=5·23

所以2S=5·22=20利用類似方法求值:

(2)將(1)的情況推廣到一般的結(jié)論,并給予證明

(3)設(shè)Sn是首項為a1,公比為q的等比數(shù)列{an}的前n項的和,求

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在二項式定理這節(jié)教材中有這樣一個性質(zhì):Cn0+Cn1+Cn2+Cn3+…Cnn=2n,n∈N
(1)計算1•C30+2•C31+3•C32+4•C33的值方法如下:
設(shè)S=1•C30+2•C31+3•C32+4•C33又S=4•C33+3•C32+2•C31+1•C30
相加得2S=5•C30+5•C31+5•C32+5•C33即2S=5•23
所以2S=5•22=20利用類似方法求值:1•C20+2•C21+3•C22,1•C40+2•C41+3•C42+4•C43+5•C44
(2)將(1)的情況推廣到一般的結(jié)論,并給予證明
(3)設(shè)Sn是首項為a1,公比為q的等比數(shù)列{an}的前n項的和,求S1Cn0+S2Cn1+S3Cn2+S4Cn3+…+Sn+1Cnn,n∈N.

查看答案和解析>>

同步練習冊答案