已知圓2x2+2y2-8x-8y-1=0的圓心為M,B為該圓上任意一點,當(dāng)直線BM 與直線l:x+y-9=0 相交于點A時,圓上總存在點C使∠BAC=45°.
(1)當(dāng)點A的橫坐標(biāo)為4時,求直線AC的方程;
(2)求點A的橫坐標(biāo)的取值范圍.
【答案】
分析:(1)根據(jù)圓與直線的方程可知:M(2,2),A(4,5),kAM=
,設(shè)直線AC的斜率為k,則有
,解得k從而求得直線AC的方程;
(2)將圓的方程化為(x-2)
2+(y-2)
2=(
)
2,設(shè)A(a,9-a)①當(dāng)a≠2時,把∠BAC看作AB到AC的角,又點C在圓M上,由圓心到AC的距離小于等于圓的半徑,即
≤
求解.②當(dāng)a=2時,則A(2,7)與直線x=2成45°角的直線有y-7=x-2,M到它的距離d=
>
,這樣點C不在圓M上不成立.
解答:解:(1)依題意M(2,2),A(4,5),kAM=
,
設(shè)直線AC的斜率為k,則
,
解得k=-5或k=
,
故所求直線AC的方程為5x+y-25=0或x-5y+21=0;
(2)圓的方程可化為(x-2)
2+(y-2)
2=(
)
2,設(shè)A點的橫坐標(biāo)為a.
則縱坐標(biāo)為9-a;
①當(dāng)a≠2時,kAB=
,設(shè)AC的斜率為k,把∠BAC看作AB到AC的角,
則可得k=
,直線AC的方程為y-(9-a)=
(x-a)
即5x-(2a-9)y-2a
2+22a-81=0,
又點C在圓M上,
所以只需圓心到AC的距離小于等于圓的半徑,
即
≤
,
化簡得a
2-9a+18≤0,
解得3≤a≤6;
②當(dāng)a=2時,則A(2,7)與直線x=2成45°角的直線為y-7=x-2
即x-y+5=0,M到它的距離d=
=
>
,
這樣點C不在圓M上,
還有x+y-9=0,顯然也不滿足條件,
綜上:A點的橫坐標(biāo)范圍為[3,6].
點評:本題主要考查直線與圓的位置關(guān)系及方程的應(yīng)用,還涉及了直線中的到角公式,點到直線的距離等,考查計算能力.