(08年北京卷理)(本小題共14分)

已知菱形的頂點(diǎn)在橢圓上,對(duì)角線所在直線的斜率為1.

(Ⅰ)當(dāng)直線過點(diǎn)時(shí),求直線的方程;

(Ⅱ)當(dāng)時(shí),求菱形面積的最大值.

【標(biāo)準(zhǔn)答案】: (Ⅰ)由題意得直線的方程為

因?yàn)樗倪呅?IMG height=19 src='http://thumb.zyjl.cn/pic1/img/20090321/20090321143658003.gif' width=48>為菱形,所以

于是可設(shè)直線的方程為

因?yàn)?IMG height=19 src='http://thumb.zyjl.cn/pic1/img/20090321/20090321143658009.gif' width=41>在橢圓上,

所以,解得

設(shè)兩點(diǎn)坐標(biāo)分別為

,,

所以

所以的中點(diǎn)坐標(biāo)為

由四邊形為菱形可知,點(diǎn)在直線上,

所以,解得

所以直線的方程為,即

(Ⅱ)因?yàn)樗倪呅?IMG height=19 src='http://thumb.zyjl.cn/pic1/img/20090321/20090321143658003.gif' width=48>為菱形,且,

所以

所以菱形的面積

由(Ⅰ)可得

所以

所以當(dāng)時(shí),菱形的面積取得最大值

【高考考點(diǎn)】: 直線方程,最值

【易錯(cuò)提醒】: 不會(huì)使用判別式和韋達(dá)定理

【備考提示】: 解析幾何的綜合題在高考中的“綜合程度”往往比較高,注意復(fù)習(xí)時(shí)與之匹配。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年北京卷理)如圖,函數(shù)的圖象是折線段,其中的坐標(biāo)分別為,則       ;        .(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年北京卷理)(本小題共13分)

甲、乙等五名奧運(yùn)志愿者被隨機(jī)地分到四個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名志愿者.

(Ⅰ)求甲、乙兩人同時(shí)參加崗位服務(wù)的概率;

(Ⅱ)求甲、乙兩人不在同一個(gè)崗位服務(wù)的概率。

(Ⅲ)設(shè)隨機(jī)變量為這五名志愿者中參加崗位服務(wù)的人數(shù),求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年北京卷理)(本小題共14分)

如圖,在三棱錐中,,,,

(Ⅰ)求證:;

(Ⅱ)求二面角的大;

(Ⅲ)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年北京卷理)過直線上的一點(diǎn)作圓的兩條切線,當(dāng)直線關(guān)于對(duì)稱時(shí),它們之間的夾角為(    )

A.         B.      C.     D.

查看答案和解析>>

同步練習(xí)冊(cè)答案