分析 (1)由函數的圖象的頂點坐標求出A,由周期求出ω,由圖象與y軸的交點為(0,1)求出φ的值,可得函數的解析式,利用正弦函數的單調性可求單調遞增區(qū)間;
(2)在同一坐標系中畫出y=2sin(2x+$\frac{π}{6}$)和直線y=m(m∈R)的圖象,結合正弦函數的圖象的特征,數形結合求得實數m的取值范圍和這兩個根的和.
解答 (本題滿分為15分)
解:(1)由題意可得:A=2,
由在y軸右側的第一個最高點和最低點分別為(x0,2),(x0+$\frac{π}{2}$,-2),可得:
$\frac{T}{2}$=(x0+$\frac{π}{2}$)-x0=$\frac{π}{2}$,可得:T=π,
∴ω=2,可得:f(x)=2sin(x+φ),
又∵圖象與y軸的交點為(0,1),可得:2sinφ=1,解得:sinφ=$\frac{1}{2}$,
∵|φ|<$\frac{π}{2}$,可得:φ=$\frac{π}{6}$,
∴函數f(x)的解析式為:f(x)=2sin(2x+$\frac{π}{6}$)…4分
由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,可得:kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,k∈Z,
可解得f(x)的單調遞增區(qū)間是:[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z…8分
(2)如圖所示,在同一坐標系中畫出y=2sin(2x+$\frac{π}{6}$)和y=m(m∈R)的圖象,
由圖可知,當-2<m≤0或1≤m<2時,直線y=m與曲線有兩個不同的交點,即原方程有兩個不同的實數根,
當-2<m≤0時,兩根和為$\frac{4π}{3}$;
當1≤m<2時,兩根和為$\frac{π}{3}$…15分
點評 本題主要考查由函數y=Asin(ωx+φ)的部分圖象求解析式,由函數的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值,考查了正弦函數的圖象的特征,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ∅ | B. | {3} | C. | {2,3} | D. | {0,1,2,3} |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
2x-$\frac{π}{3}$ | -$\frac{4π}{3}$ | -π | -$\frac{π}{2}$ | 0 | $\frac{π}{2}$ | $\frac{2π}{3}$ |
x | -$\frac{π}{2}$ | -$\frac{π}{3}$ | -$\frac{π}{12}$ | $\frac{π}{6}$ | $\frac{5π}{12}$ | $\frac{π}{2}$ |
f(x) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | sin$\frac{19π}{8}$<cos$\frac{14π}{9}$ | B. | sin(-$\frac{54π}{7}$)<sin(-$\frac{63π}{8}$) | ||
C. | tan(-$\frac{13π}{4}$)>tan(-$\frac{17π}{5}$) | D. | tan138°>tan143° |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -4≤a≤9 | B. | a≤-4或a≥9 | C. | -9≤a≤4 | D. | a≤-9或a≥4 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 12 | B. | 14 | C. | 3 | D. | 21 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com