設(shè)函數(shù)f(x)=

(Ⅰ)求f(x)的單調(diào)區(qū)間和極值;

(Ⅱ)是否存在實(shí)數(shù)a,使得關(guān)于x的不等式f(x)a的解集為(0,+)?若存在,求a的取值范圍;若不存在,試說明理由.

解:(Ⅰ) 

故當(dāng)。 

所以在(0,1)單調(diào)遞增,在單調(diào)遞減。  

由此知的極大值為,沒有極小值。

(Ⅱ)(i)當(dāng)時(shí),

由于

故關(guān)于的不等式得解集為。

(ii)當(dāng)時(shí),由,

其中n為正整數(shù),且有

  

又n時(shí),

。

取整數(shù)滿足

即當(dāng)時(shí),關(guān)于x得不等式得解集不是

綜合(i)(ii)知,存在,使得關(guān)于得不等式的解集為,且的取值范圍為 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=3sin(-2x+
π
4
)
的圖象為C,有下列四個(gè)命題:
①圖象C關(guān)于直線x=-
8
對(duì)稱:
②圖象C的一個(gè)對(duì)稱中心是(
8
,0)
;
③函數(shù)f(x)在區(qū)間[
π
8
,
8
]
上是增函數(shù);
④圖象C可由y=-3sin2x的圖象左平移
π
8
得到.其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
2
x2-tx+3lnx,g(x)=
2x+t
x2-3
,已知a,b為函數(shù)f(x)的極值點(diǎn)(0<a<b).
(1)求函數(shù)g(x)在區(qū)間(-∞,-a)上單調(diào)區(qū)間,并說明理由;
(2)若曲線g(x)在x=1處的切線斜率為-4,且方程g(x)-m=0有兩上不等的負(fù)實(shí)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx-
1
2
ax2-bx

(1)當(dāng)a=b=
1
2
時(shí),求f(x)的最大值;
(2)當(dāng)a=0,b=-1時(shí),方程2mf(x)=x2有唯一實(shí)數(shù)解,求正數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx-
12
ax2-bx

(I)若x=1是f(x)的極大值點(diǎn),求a的取值范圍;
(II)當(dāng)a=0,b=-1時(shí),方程2mf(x)=x2中唯一實(shí)數(shù)解,求正數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x2x+1
,g(x)=(a+2)x+5-3a.
(1)求函數(shù)f(x)在區(qū)間[0,1]上的值域;
(2)若對(duì)于任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實(shí)數(shù)a的取值范圍..

查看答案和解析>>

同步練習(xí)冊(cè)答案