10.已知函數(shù)f(x)=$\sqrt{({1-x})({x-5})}$,則它的值域為( 。
A.[0,+∞)B.(-∞,4]C.[0,4]D.[0,2]

分析 求出函數(shù)的定義域,利用二次函數(shù)的圖象及性質即可得值域.

解答 解:函數(shù)f(x)=$\sqrt{({1-x})({x-5})}$,
其定義域為:{x|1≤x≤5},
那么:f(x)=$\sqrt{({1-x})({x-5})}$=$\sqrt{-(x-3)^{2}+4}$,(1≤x≤5)
當x=3時,函數(shù)f(x)取得最大值為2.
所以函數(shù)f(x)=$\sqrt{({1-x})({x-5})}$,則它的值域為[0,2].
故選:D

點評 本題考查了函數(shù)的定義域問題和利用配方法求值域的問題.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.設點P為函數(shù)f(x)=$\frac{1}{2}$(x3-$\frac{1}{x}}$)圖象上任一點,且f(x)在點P處的切線的傾斜角為α,則α的取值范圍為$[{\frac{π}{3},\frac{π}{2}})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知動圓P過定點A(-2$\sqrt{2}$,0),且內切于定圓B:(x-2$\sqrt{2}$)2+y2=36.
(Ⅰ)求動圓圓心P的軌跡C方程;
(Ⅱ)在(Ⅰ)的條件下,記軌跡C被y=x+m所截得的弦長為f(m),求f(m)的解析式及其最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.給出下列四個命題:
①垂直于同一平面的兩條直線相互平行;
②平行于同一平面的兩條直線相互平行;
③若一條直線平行于一個平面內的無數(shù)條直線,那么這條直線平行于這個平面;
④若一條直線垂直于一個平面內的任一條直線,那么這條直線垂直于這個平面
其中真命題的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設函數(shù)y=f(x)是奇函數(shù),并且對任意x∈R,均有f(-x)=f(x+2),又當x∈(0,1]時,f (x)=2 x,則f($\frac{5}{2}$)的值是(  )
A.$\frac{\sqrt{72}}{2}$B.-$\frac{\sqrt{2}}{2}$C.-$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.三個數(shù)0.76,60.7,log0.25的大小關系為( 。
A.0.76<l log0.25<60.7B.0.76<60.7<l log0.25
C.log0.25<60.7<0.76D.log0.25<0.76<60.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若連擲兩次骰子,分別得到的點數(shù)是m、n,將m、n作為點P的坐標,則點P落在區(qū)域|x-2|+|y-2|≤2內的概率是$\frac{11}{36}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.求滿足1+3+5+…+n>500的最小自然數(shù)n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知二次函數(shù)f(x)=ax2+bx+c(a≠0),記f[2](x)=f(f(x)),例:f(x)=x2+1,
則f[2](x)=(f(x))2+1=(x2+1)2+1;
(1)f(x)=x2-x,解關于x的方程f[2](x)=x;
(2)記△=(b-1)2-4ac,若f[2](x)=x有四個不相等的實數(shù)根,求△的取值范圍.

查看答案和解析>>

同步練習冊答案