【題目】已知橢圓的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是直角三角形的三個(gè)頂點(diǎn),直線與橢圓有且只有一個(gè)公共點(diǎn).

1求橢圓的方程及點(diǎn)的坐標(biāo);

2設(shè)為坐標(biāo)原點(diǎn),直線平行于,與橢圓交于不同的兩點(diǎn),且與直線交于點(diǎn).證明:存在實(shí)數(shù),使得,并求的值.

【答案】1,;2證明見解析,.

【解析】

試題分析:1根據(jù)橢圓的短軸的端點(diǎn)與左右焦點(diǎn)構(gòu)成等腰直角三角形,結(jié)合直線與橢圓只有一個(gè)交點(diǎn),利用判別式等于零,即可求出橢圓的方程和點(diǎn)的坐標(biāo);2設(shè)出點(diǎn)的坐標(biāo),根據(jù)寫出的參數(shù)方程,代入橢圓的方程中,整理得出方程,在根據(jù)參數(shù)的幾何意義求出,由求出的值.

試題解析:1設(shè)短軸一端點(diǎn)為,左右焦點(diǎn)分別為,,其中,則;

由題意,為直角三角形,

解得,

∴橢圓的方程為;

代人直線,可得

直線與橢圓只有一個(gè)交點(diǎn),則,解得,

∴橢圓的方程為

,解得,則,所以點(diǎn)的坐標(biāo)為;

2由已知可設(shè)直線的方程為

由方程組可得,所以點(diǎn)的坐標(biāo)為,.

設(shè)點(diǎn)的坐標(biāo)為.

由方程組可得

方程的判別式為,由解得.

,.

所以

同理.

所以

故存在常數(shù),使得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:函數(shù)fx)=loga(2+x)-loga(2-x)(a>0且a1)

)求fx)定義域;

)判斷fx)的奇偶性,并說明理由;

)求使fx)>0的x的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是

A. 四邊形確定一個(gè)平面

B. 經(jīng)過一條直線和一個(gè)點(diǎn)確定一個(gè)平面

C. 經(jīng)過三點(diǎn)確定一個(gè)平面

D. 兩兩相交且不共點(diǎn)的三條直線確定一個(gè)平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l過點(diǎn)A(2,4),且被平行直線l1:x-y+1=0與l2:x-y-1=0所截的線段中點(diǎn)M在直線x+y-3=0上,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將圓每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>倍,得到曲線.

1)寫出的參數(shù)方程;

2)設(shè)直線的交點(diǎn)為,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,求:過線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列命題中,真命題是( )

A. “x=2時(shí),x2-3x+2=0”的否命題; B. “若b=3,b2=9”的逆命題;

C. ac>bc,a>b; D. “相似三角形的對(duì)應(yīng)角相等”的逆否命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將圓每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>倍,得到曲線.

(1)寫出的參數(shù)方程;

(2)設(shè)直線的交點(diǎn)為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求:過線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎(jiǎng),有人走訪了四位歌手,甲說:“是乙或丙獲獎(jiǎng)”;乙說:“甲、丙都未獲獎(jiǎng)”,丙說:“我獲獎(jiǎng)了”,丁說:“是乙獲獎(jiǎng)”,四位歌手的話只有兩位是對(duì)的,則獲獎(jiǎng)的歌手是 (  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)西部某省4A級(jí)風(fēng)景區(qū)內(nèi)住著一個(gè)少數(shù)民族村,該村投資了800萬(wàn)元修復(fù)和加強(qiáng)民俗文化基礎(chǔ)設(shè)施,據(jù)調(diào)查,修復(fù)好村民俗文化基礎(chǔ)設(shè)施后,任何一個(gè)月內(nèi)(每月按30天計(jì)算)每天的旅游人數(shù)f(x)與第x天近似地滿足 (千人),且參觀民俗文化村的游客人均消費(fèi)g(x)近似地滿足g(x)=143﹣|x﹣22|(元).

(1)求該村的第x天的旅游收入p(x)(單位千元,1≤x≤30,x∈N*)的函數(shù)關(guān)系;

(2)若以最低日收入的20%作為每一天的計(jì)量依據(jù),并以純收入的5%的稅率收回投資成本,試問該村在兩年內(nèi)能否收回全部投資成本?

查看答案和解析>>

同步練習(xí)冊(cè)答案