15.在△ABC中,角A,B,C所對邊分別為a,b,c,若$B=30°,b=2,c=2\sqrt{3}$,則角C=60°或120°.

分析 由題意和正弦定理求出sinC的值,由內(nèi)角的范圍和特殊角的三角函數(shù)值求出角C的值.

解答 解:由題意知,$B=30°,b=2,c=2\sqrt{3}$,
由正弦定理得,$\frac{sinB}=\frac{c}{sinC}$,
則sinC=$\frac{c•sinB}$=$\frac{2\sqrt{3}×\frac{1}{2}}{2}$=$\frac{\sqrt{3}}{2}$,
又0°<C<180°,且c>b,
則C=60°或120°,
故答案為:60°或120°.

點評 本題考查了正弦定理的應(yīng)用,注意內(nèi)角的范圍和邊角關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.有兩個問題:①有1000個乒乓球分別裝在3個箱子內(nèi),其中紅色箱子內(nèi)有500個,藍(lán)色箱子內(nèi)有200個,黃色箱子內(nèi)有300個,現(xiàn)從中抽取一個容量為100的樣本;②從20名學(xué)生中選出3人參加座談會.則下列說法中正確的是(  )
A.①隨機抽樣法②系統(tǒng)抽樣法B.①分層抽樣法②隨機抽樣法
C.①系統(tǒng)抽樣法②分層抽樣法D.①分層抽樣法②系統(tǒng)抽樣法

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=xlnx-ax(a∈R).
(1)若方程f(x)=-1無解,求實數(shù)a的取值范圍;
(2)當(dāng)m>0,n>0,求證f(m)+f(n)≥f(m+n)-(m+n)ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.飛機的航線和山頂在同一個鉛垂直平面內(nèi),已知飛機的高度為海拔15000m,速度為1000km/h,飛行員先看到山頂?shù)母┙菫?8°,經(jīng)過108s后又看到山頂?shù)母┙菫?8°,則山頂?shù)暮0胃叨葹椋ā 。?table class="qanwser">A.(15-18$\sqrt{3}$sin18°cos78°)kmB.(15-18$\sqrt{3}$sin18°sin78°)kmC.(15-20$\sqrt{3}$sin18°cos78°)kmD.(15-20$\sqrt{3}$sin18°sin78°)km

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-{x}^{3},x>1}\\{x+2,x≤1}\end{array}\right.$,若關(guān)于x的方程f(f(x))=a存在2個實數(shù)根,則a的取值范圍為( 。
A.[-24,0)B.(-∞,-24)∪[0,2)C.(-24,3)D.(-∞,-24]∪[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{{x}^{2}}{25}-\frac{{y}^{2}}{9}$=1的左右焦點分別為F1,F(xiàn)2,若雙曲線左支上有一點M到右焦點F2距離為18,N為F2中點,O為坐標(biāo)原點,則|NO|等于(  )
A.$\frac{2}{3}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)f(x)=ae-x-ex為奇函數(shù),則f(x)<e-$\frac{1}{e}$的解集為(  )
A.(-∞,0)B.(-∞,2)C.(2,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|x+3|,g(x)=m-2|x-11|,若2f(x)≥g(x+4)恒成立,實數(shù)m的最大值為t
(1)求實數(shù)t
(2)已知實數(shù)x、y、z滿足2x2+3y2+6z2=a(a>0),且x+y+z的最大值是$\frac{t}{20}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.sin(-945°)的值為( 。
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.-$\frac{\sqrt{3}}{2}$D..$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊答案