如圖:直平行六面體,底面ABCD是邊長為2a的菱形,∠BAD=60°,E為AB中點,二面角為60°;

    (1)求證:平面⊥平面;

    (2)求三棱錐的體積;

   

 

 

 

 

 

 

【答案】

(1)  (略)    (2)三棱錐的體積為;.高.考

【解析】

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:直平行六面體ABCD-A1B1C1D1,底面ABCD是邊長為2a的菱形,∠BAD=60°,E為AB中點,二面角A1-ED-A為60°.
(I)求證:平面A1ED⊥平面ABB1A1
(II)求二面角A1-ED-C1的余弦值;
(III)求點C1到平面A1ED的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省衛(wèi)輝市高三第四次月考數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)

如圖,直平行六面體ABCD-A1B1C1D1的高為3,

底面是邊長為4, 且∠BAD=60°的菱形,AC∩

BD=O,A1C1∩B1D1=O1,E是線段AO1上一點.

(Ⅰ)求點A到平面O1BC的距離;

(Ⅱ)當(dāng)AE為何值時,二面角E-BC-D的大小為.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省高考數(shù)學(xué)仿真押題卷01(理科)(解析版) 題型:解答題

如圖:直平行六面體ABCD-A1B1C1D1,底面ABCD是邊長為2a的菱形,∠BAD=60°,E為AB中點,二面角A1-ED-A為60°.
(I)求證:平面A1ED⊥平面ABB1A1;
(II)求二面角A1-ED-C1的余弦值;
(III)求點C1到平面A1ED的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河南省鄭州47中高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖:直平行六面體ABCD-A1B1C1D1,底面ABCD是邊長為2a的菱形,∠BAD=60°,E為AB中點,二面角A1-ED-A為60°.
(I)求證:平面A1ED⊥平面ABB1A1;
(II)求二面角A1-ED-C1的余弦值;
(III)求點C1到平面A1ED的距離.

查看答案和解析>>

同步練習(xí)冊答案