已知曲線C上動(dòng)點(diǎn)P(x,y)到定點(diǎn)F1,0)與定直線l1:x=的距離之比為常數(shù)
(1)求曲線C的軌跡方程;
(2)若過(guò)點(diǎn)Q(1,)引曲線C的弦AB恰好被點(diǎn)Q平分,求弦AB所在的直線方程;
(3)以曲線C的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與曲線C交于點(diǎn)M與點(diǎn)N,求的最小值,并求此時(shí)圓T的方程.
【答案】分析:(1)利用動(dòng)點(diǎn)P(x,y)到定點(diǎn)F1,0)與定直線l1:x=的距離之比為常數(shù),建立方程,化簡(jiǎn),即可得到橢圓的標(biāo)準(zhǔn)方程;
(2)由題意,可知斜率k存在,設(shè)l:y-=k(x-1)代入橢圓方程,消去y可得一元二次方程,利用過(guò)點(diǎn)Q(1,)引曲線C的弦AB恰好被點(diǎn)Q平分,即可求直線的斜率,從而可得直線的方程;
(3)點(diǎn)M與點(diǎn)N關(guān)于x軸對(duì)稱(chēng),設(shè)M(x1,y1),N(x2,y2),不妨設(shè)y1>0,用坐標(biāo)表示出,利用配方法,確定最小值為-,可得M的坐標(biāo),從而可求圓T的方程.
解答:解:(1)∵動(dòng)點(diǎn)P(x,y)到定點(diǎn)F1,0)與定直線l1:x=的距離之比為常數(shù)

所以橢圓的標(biāo)準(zhǔn)方程為
(2)由題意,可知斜率k存在,設(shè)l:y-=k(x-1)代入橢圓方程,消去y可得(1+4k2)x2-4k(2k-1)x+(1-2k)2-4=0
因?yàn)檫^(guò)點(diǎn)Q(1,)引曲線C的弦AB恰好被點(diǎn)Q平分,所以,解得k=-
此時(shí)△>0,所以直線l:y-=(x-1),即l:y=
(3)點(diǎn)M與點(diǎn)N關(guān)于x軸對(duì)稱(chēng),設(shè)M(x1,y1),N(x2,y2),不妨設(shè)y1>0.
由于點(diǎn)M在橢圓C上,所以
由已知T(-2,0),則,
=
由于-2<x1<2,故當(dāng)x1=-時(shí),取得最小值為-
此時(shí),故M(-,),又點(diǎn)M在圓T上,代入圓的方程得到
故圓T的方程為:
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查向量知識(shí)的運(yùn)用,正確運(yùn)用韋達(dá)定理是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C上的動(dòng)點(diǎn)M到y(tǒng)軸的距離比到點(diǎn)F(1,0)的距離小1,
(I)求曲線C的方程;
(II)過(guò)F作弦PQ、RS,設(shè)PQ、RS的中點(diǎn)分別為A、B,若
PQ
RS
=0
,求|
AB
|
最小時(shí),弦PQ、RS所在直線的方程;
(III)是否存在一定點(diǎn)T,使得
AF
TB
-
FT
?若存在,求出P的坐標(biāo),若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C上動(dòng)點(diǎn)P(x,y)到定點(diǎn)F1
3
,0)與定直線l1:x=
4
3
3
的距離之比為常數(shù)
3
2

(1)求曲線C的軌跡方程;
(2)以曲線c的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與曲線C交于點(diǎn)M與點(diǎn)N,求
TM
TN
的最小值,并求此時(shí)圓T的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•崇明縣二模)已知曲線C上動(dòng)點(diǎn)P(x,y)到定點(diǎn)F1
3
,0)與定直線l1:x=
4
3
3
的距離之比為常數(shù)
3
2

(1)求曲線C的軌跡方程;
(2)若過(guò)點(diǎn)Q(1,
1
2
)引曲線C的弦AB恰好被點(diǎn)Q平分,求弦AB所在的直線方程;
(3)以曲線C的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與曲線C交于點(diǎn)M與點(diǎn)N,求
TM
TN
的最小值,并求此時(shí)圓T的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)江蘇省無(wú)錫市青陽(yáng)高級(jí)中學(xué)高三(上)月考數(shù)學(xué)試卷(一)(解析版) 題型:解答題

已知曲線C上動(dòng)點(diǎn)P(x,y)到定點(diǎn)F1,0)與定直線l1:x=的距離之比為常數(shù)
(1)求曲線C的軌跡方程;
(2)以曲線c的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與曲線C交于點(diǎn)M與點(diǎn)N,求的最小值,并求此時(shí)圓T的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案