(本題滿分16分,第1小題 4分,第2小題6分,第3小題6分)
設(shè)函數(shù),數(shù)列滿足.
⑴求數(shù)列的通項(xiàng)公式;
⑵設(shè),若對(duì)恒成立,求實(shí)數(shù)的取值范圍;
⑶是否存在以為首項(xiàng),公比為的數(shù)列,,使得數(shù)列中每一項(xiàng)都是數(shù)列中不同的項(xiàng),若存在,求出所有滿足條件的數(shù)列的通項(xiàng)公式;若不存在,說(shuō)明理由.
(本題滿分16分,第1小題 4分,第2小題6分,第3小題6分)
解:⑴因?yàn)?sub>,
所以.…………………………………………………………………………2分
因?yàn)?sub>,所以數(shù)列是以1為首項(xiàng),公差為的等差數(shù)列.
所以.…………………………………………………………………………4分
⑵①當(dāng)時(shí),
.…………………………………………………………………………6分
②當(dāng)時(shí),
.…………………………………………8分
所以
要使對(duì)恒成立,
只要使.
只要使,
故實(shí)數(shù)的取值范圍為.……………………………………………………10分
⑶由,知數(shù)列中每一項(xiàng)都不可能是偶數(shù).
①如存在以為首項(xiàng),公比為2或4的數(shù)列,,
此時(shí)中每一項(xiàng)除第一項(xiàng)外都是偶數(shù),故不存在以為首項(xiàng),公比為偶數(shù)的數(shù)列.……………………………………………………………………………………12分
②當(dāng)時(shí),顯然不存在這樣的數(shù)列.
當(dāng)時(shí),若存在以為首項(xiàng),公比為3的數(shù)列,.
則,,,.
所以滿足條件的數(shù)列的通項(xiàng)公式為.……………………………………16分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分16分,第一小題8分;第二小題8分)
已知是軸正方向的單位向量,設(shè)=, =,且滿足.
求點(diǎn)的軌跡方程;
過點(diǎn)的直線交上述軌跡于兩點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市高三第三次月考試題文科數(shù)學(xué) 題型:解答題
. (本題滿分16分,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分)
已知公差大于零的等差數(shù)列的前項(xiàng)和為,且滿足,,
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列是等差數(shù)列,且,求非零常數(shù);
(3)若(2)中的的前項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:上海市長(zhǎng)寧區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題
(本題滿分16分,第(1)小題4分,第(2)小題6分,第(2)小題6分)
在平行四邊形中,已知過點(diǎn)的直線與線段分別相交于點(diǎn)。若。
(1)求證:與的關(guān)系為;
(2)設(shè),定義在上的偶函數(shù),當(dāng)時(shí),且函數(shù)圖象關(guān)于直線對(duì)稱,求證:,并求時(shí)的解析式;
(3)在(2)的條件下,不等式在上恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(理) 題型:解答題
(本題滿分16分;第(1)小題5分,第(2)小題5分,第(3)小題6分)
設(shè)、為坐標(biāo)平面上的點(diǎn),直線(為坐標(biāo)原點(diǎn))與拋物線交于點(diǎn)(異于).
(1) 若對(duì)任意,點(diǎn)在拋物線上,試問當(dāng)為何值時(shí),點(diǎn)在某一圓上,并求出該圓方程;
(2) 若點(diǎn)在橢圓上,試問:點(diǎn)能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說(shuō)明理由;
(3) 對(duì)(1)中點(diǎn)所在圓方程,設(shè)、是圓上兩點(diǎn),且滿足,試問:是否存在一個(gè)定圓,使直線恒與圓相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題
(本題滿分16分,第一小題8分;第二小題8分)
已知是軸正方向的單位向量,設(shè)=, =,且滿足.
(1) 求點(diǎn)的軌跡方程;
(2) 過點(diǎn)的直線交上述軌跡于兩點(diǎn),且,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com