如圖,過y軸正半軸上的任意一點P,作x軸的平行線,分別與反比例函數(shù)的圖象交于點A和點B,若點C是x軸上任意一點,連接AC、BC,
則△ABC的面積為       (    )

A.3              B.4             C.5              D.6
A
解:設P(0,b),
∵直線APB∥x軸,
∴A,B兩點的縱坐標都為b,
而點A在反比例函數(shù)y=-的圖象上,
∴當y=b,x=- ,即A點坐標為(,b),
又∵點B在反比例函數(shù)y=的圖象上,
∴當y=b,x= ,即B點坐標為(,b),
∴AB=-()= ,
∴S△ABC= •AB•OP= •b=3.
故選A
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知橢圓的一個焦點與拋物線的焦點重合,P為橢圓與拋物線的一個公共點,且|PF|=2,傾斜角為的直線過點.
(1)求橢圓的方程;
(2)設橢圓的另一個焦點為,問拋物線上是否存在一點,使得關于直線對稱,若存在,求出點的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在ABC中,C=90°,AC="b," BC="a," P為三角形內的一點,且,
(Ⅰ)建立適當?shù)淖鴺讼登蟪鯬的坐標;
(Ⅱ)求證:│PA│2+│PB│2=5│PC│
(Ⅲ)若a+2b=2,求以PA,PB,PC分別為直徑的三個圓的面積之和的最小值,并求出此時的b值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過點P的雙曲線與橢圓共焦點,則其漸近線方程是         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在空間直角坐標系中,方程表示中心在原點、其軸與坐標軸重合的某橢球面的標準方程.分別叫做橢球面的長軸長,中軸長,短軸長.類比在平面直角坐標系中橢圓標準方程的求法,在空間直角坐標系中,若一橢球面的中心在原點、其軸與坐標軸重合,平面截橢球面所得橢圓的方程為,且過點M,則此橢球面的標準方程為________    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,以AB為直徑的圓有一內接梯形,且.若雙曲線以A、B為焦點,且過C、D兩點,則當梯形的周長最大時,雙曲線的離心率為(      ).

A、        B、     C、2       D、

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓與雙曲線共焦點,則橢圓的離心率的取值范圍為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

軸上兩點,點的橫坐標為2,且,若直線的方程為,則直線的方程為(       )             
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

與拋物線有且僅有一個公共點,并且過點的直線方程為       

查看答案和解析>>

同步練習冊答案