已知△ABC的三內(nèi)角A,B,C成等差數(shù)列,BC=2,AC=3,
求:(1)邊AB的長(zhǎng);
(2)△ABC的面積.

解:(1)由2B=A+C,且A+B+C=180°,得到B=60°,
由BC=a=2,AC=b=3,cosB=cos60°=,
由余弦定理得:cosB===
整理得c2-2c-5=0,及(c-1)2=6,
解得:
∴AB=1+;
(2)由sinB=sin60°=,AB=1+,BC=2,

分析:(1)根據(jù)三內(nèi)角成等差數(shù)列,利用等差數(shù)列的性質(zhì)及三角形的內(nèi)角和定理可得B的度數(shù),進(jìn)而求出sinB和cosB的值,然后由a與b的值,利用余弦定理列出關(guān)于c的方程,求出方程的解可得c的值,即為AB的長(zhǎng);
(2)由sinB的值,以及AB和BC的長(zhǎng),利用三角形的面積公式即可求出三角形ABC的面積.
點(diǎn)評(píng):此題考查了等差數(shù)列的性質(zhì),余弦定理,以及三角形的面積公式,其中根據(jù)三內(nèi)角成等差數(shù)列,利用等差數(shù)列的性質(zhì)得出B的度數(shù)是本題的突破點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,且
.
a+ba-c
ca-b
.
=0

(1)求角B的大小;
(2)若a+c=8,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,且
.
a+ba-c
ca-b
.
=0

(1)求角B的大;
(2)若b=6,求△ABC的外接圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三內(nèi)角A,B,C成等差數(shù)列,BC=2,AC=3,
求:(1)邊AB的長(zhǎng);
(2)△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三內(nèi)角A,B,C成等差數(shù)列,則角B等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三內(nèi)角A,B,C成等差數(shù)列,則 tan(A+C)=( 。
A、
3
3
B、-
3
3
C、-
3
D、
3

查看答案和解析>>

同步練習(xí)冊(cè)答案