某工廠生產(chǎn)A,B兩種元件,其質(zhì)量按測(cè)試指標(biāo)劃分,指標(biāo)大于或等于82為正品,小于82為次品.現(xiàn)隨機(jī)抽取這兩種元件各100個(gè)進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:

測(cè)試
指標(biāo)
[70,76)
[76,82)
[82,88)
[88,94)
[94,100]
元件A
8
12
40
32
8
元件B
7
18
40
29
6
(1)試分別估計(jì)元件A,元件B為正品的概率;
(2)生產(chǎn)1個(gè)元件A,若是正品則盈利40元,若是次品則虧損5元;生產(chǎn)1個(gè)元件B,若是正品則盈利50元,若是次品則虧損10元.在(1)的前提下,
(ⅰ)X為生產(chǎn)1個(gè)元件A和1個(gè)元件B所得的總利潤(rùn),求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(ⅱ)求生產(chǎn)5個(gè)元件B所得利潤(rùn)不少于140元的概率.

(1)
(2)(ⅰ) 隨機(jī)變量X的分布列為

X
90
45
30
-15
P




 
數(shù)學(xué)期望E(X)=66
(ⅱ)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲乙兩班進(jìn)行消防安全知識(shí)競(jìng)賽,每班出3人組成甲乙兩支代表隊(duì),首輪比賽每人一道必答題,答對(duì)則為本隊(duì)得1分,答錯(cuò)不答都得0分,已知甲隊(duì)3人每人答對(duì)的概率分別為,乙隊(duì)每人答對(duì)的概率都是.設(shè)每人回答正確與否相互之間沒(méi)有影響,用表示甲隊(duì)總得分.
(I)求隨機(jī)變量的分布列及其數(shù)學(xué)期望E;
(Ⅱ)求在甲隊(duì)和乙隊(duì)得分之和為4的條件下,甲隊(duì)比乙隊(duì)得分高的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某地區(qū)為了解高二學(xué)生作業(yè)量和玩電腦游戲的情況,對(duì)該地區(qū)內(nèi)所有高二學(xué)生采用隨機(jī)抽樣的方法,得到一個(gè)容量為200的樣本.統(tǒng)計(jì)數(shù)據(jù)如下:

(1)已知該地區(qū)共有高二學(xué)生42500名,根據(jù)該樣本估計(jì)總體,其中喜歡電腦游戲并認(rèn)為作業(yè)不多的人有多少名?
(2)在A,B,C,D,E,F(xiàn)六名學(xué)生中,僅有A,B兩名學(xué)生認(rèn)為作業(yè)多.如果從這六名學(xué)生中隨機(jī)抽取兩名,求至少有一名學(xué)生認(rèn)為作業(yè)多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

現(xiàn)有編號(hào)分別為1,2,3,4,5,6,7, 8,9的九道不同的數(shù)學(xué)題。某同學(xué)從這九道題中一次隨機(jī)抽取兩道題,每題被抽到的概率是相等的,用符號(hào)表示事件“抽到兩 題的編號(hào)分別為,且”.
(1)共有多少個(gè)基本事件?并列舉出來(lái);
(2)求該同學(xué)所抽取的兩道題的編號(hào)之和小于17但不小于11的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某射手進(jìn)行射擊訓(xùn)練,假設(shè)每次射擊擊中目標(biāo)的概率為,且每次射擊的結(jié)果互不影響,已知射手射擊了5
次,求:
(1)其中只在第一、三、五次擊中目標(biāo)的概率;
(2)其中恰有3次擊中目標(biāo)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某種玫瑰花,進(jìn)貨商當(dāng)天以每支1元從鮮花批發(fā)商店購(gòu)進(jìn),以每支2元售出.若當(dāng)天賣不完,剩余的玫瑰花批發(fā)商店以每支0.5元的價(jià)格回收.根據(jù)市場(chǎng)統(tǒng)計(jì),得到這個(gè)季節(jié)的日銷售量X(單位:支)的頻率分布直方圖(如圖所示),將頻率視為概率.(12分)
 
(1)求頻率分布直方圖中的值;
(2)若進(jìn)貨量為(單位支),當(dāng)n≥X時(shí),求利潤(rùn)Y的表達(dá)式;
(3)若當(dāng)天進(jìn)貨量n=400,求利潤(rùn)Y的分布列和數(shù)學(xué)期望E(Y)(統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
根據(jù)世行2013年新標(biāo)準(zhǔn),人均GDP低于1035美元為低收入國(guó)家;人均GDP為1035-4085元為中等偏下收入國(guó)家;人均GDP為4085-12616美元為中等偏上收入國(guó)家;人均GDP不低于12616美元為高收入國(guó)家.某城市有5個(gè)行政區(qū),各區(qū)人口占該城市人口比例及人均GDP如下表:

(1)判斷該城市人均GDP是否達(dá)到中等偏上收入國(guó)家標(biāo)準(zhǔn);
(2)現(xiàn)從該城市5個(gè)行政區(qū)中隨機(jī)抽取2個(gè),求抽到的2個(gè)行政區(qū)人均GDP都達(dá)到中等偏上收入國(guó)家標(biāo)準(zhǔn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一批產(chǎn)品需要進(jìn)行質(zhì)量檢驗(yàn),質(zhì)檢部門規(guī)定的檢驗(yàn)方案是:先從這批產(chǎn)品中任取3件作檢驗(yàn),若3件產(chǎn)品都是合格品,則通過(guò)檢驗(yàn);若有2件產(chǎn)品是合格品,則再?gòu)倪@批產(chǎn)品中任取1件作檢驗(yàn),這1件產(chǎn)品是合格品才能通過(guò)檢驗(yàn);若少于2件合格品,則不能通過(guò)檢驗(yàn),也不再抽檢. 假設(shè)這批產(chǎn)品的合格率為80%,且各件產(chǎn)品是否為合格品相互獨(dú)立.
(1)求這批產(chǎn)品通過(guò)檢驗(yàn)的概率;
(2)已知每件產(chǎn)品檢驗(yàn)費(fèi)為125元,并且所抽取的產(chǎn)品都要檢驗(yàn),記這批產(chǎn)品的檢驗(yàn)費(fèi)為元,求的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知復(fù)數(shù)z=x+yi(x,y∈R)在復(fù)平面上對(duì)應(yīng)的點(diǎn)為M.
(1)設(shè)集合P={-4,-3,-2,0},Q={0,1,2},從集合P中隨機(jī)取一個(gè)數(shù)作為x,從集合Q中隨機(jī)取一個(gè)數(shù)作為y,求復(fù)數(shù)z為純虛數(shù)的概率;
(2)設(shè)x∈[0,3],y∈[0,4],求點(diǎn)M落在不等式組:所表示的平面區(qū)域內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案