【題目】已知圓x2+y2=4上一定點(diǎn)A(2,0),B(1,1)為圓內(nèi)一點(diǎn),P,Q為圓上的動(dòng)點(diǎn).

(1)求線段AP中點(diǎn)的軌跡方程;
(2)若∠PBQ=90°,求線段PQ中點(diǎn)的軌跡方程.

【答案】
(1)解:設(shè)AP中點(diǎn)為M(x,y),

由中點(diǎn)坐標(biāo)公式可知,P點(diǎn)坐標(biāo)為(2x﹣2,2y)

∵P點(diǎn)在圓x2+y2=4上,∴(2x﹣2)2+(2y)2=4.

故線段AP中點(diǎn)的軌跡方程為(x﹣1)2+y2=1


(2)解:設(shè)PQ的中點(diǎn)為N(x,y),

在Rt△PBQ中,|PN|=|BN|,

設(shè)O為坐標(biāo)原點(diǎn),則ON⊥PQ,

所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2

所以x2+y2+(x﹣1)2+(y﹣1)2=4.

故線段PQ中點(diǎn)的軌跡方程為x2+y2﹣x﹣y﹣1=0.


【解析】(1)設(shè)出AP的中點(diǎn)坐標(biāo),利用中點(diǎn)坐標(biāo)公式求出P的坐標(biāo),據(jù)P在圓上,將P坐標(biāo)代入圓方程,求出中點(diǎn)的軌跡方程.(2)利用直角三角形的中線等于斜邊長(zhǎng)的一半得到|PN|=|BN|,利用圓心與弦中點(diǎn)連線垂直弦,利用勾股定理得到
|OP|2=|ON|2+|PN|2 , 利用兩點(diǎn)距離公式求出動(dòng)點(diǎn)的軌跡方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)求f(x)的單調(diào)區(qū)間;
(2)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(3)求證:對(duì)任意的正數(shù)a與b,恒有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若x,y滿足約束條件 ,且向量 =(3,2), =(x,y),則 的取值范圍(
A.[ ,5]
B.[ ,5]
C.[ ,4]
D.[ ,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】實(shí)數(shù)x,y滿足 ,
(1)若z=2x+y,求z的最大值;
(2)若z=x2+y2 , 求z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:若a、b∈R,則|a|+|b|>1是|a+b|>1的充分而不必要條件;命題q:函數(shù)y= 的定義域是(﹣∞,﹣1]∪[3,+∞),則(
A.“p或q”為假
B.“p且q”為真
C.p真q假
D.p假q真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)兩向量e1、e2滿足| |=2,| |=1, 、 的夾角為60°,若向量2t +7 與向量 +t 的夾角為鈍角,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線過點(diǎn)P且與x軸、y軸的正半軸分別交于AB兩點(diǎn),O為坐標(biāo)原點(diǎn),是否存在這樣的直線滿足下列條件:①△AOB的周長(zhǎng)為12;②△AOB的面積為6.若存在,求出方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形是菱形, ,平面平面

在棱上運(yùn)動(dòng).

(1)當(dāng)在何處時(shí), 平面

(2)已知的中點(diǎn), 交于點(diǎn),當(dāng)平面時(shí),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過點(diǎn)P( ,0)且與雙曲線4x2﹣y2=1只有一個(gè)交點(diǎn)的直線有條.

查看答案和解析>>

同步練習(xí)冊(cè)答案