設(shè)數(shù)列{an}是首項(xiàng)為50,公差為2的等差數(shù)列;{bn}是首項(xiàng)為10,公差為4的等差數(shù)列,以ak、bk為相鄰兩邊的矩形內(nèi)最大圓面積記為Sk,若k≤21,那么Sk等于
(2k+3)2π
(2k+3)2π
分析:根據(jù)數(shù)列{an}是首項(xiàng)為50,公差為2的等差數(shù)列,得出an=50+2(n-1)=2n+48,{bn}是首項(xiàng)為10,公差為4的等差數(shù)列,得到bn=10+4(n-1)=4n+6,因?yàn)閚≤21,則2n+48>4n+6,從而an≥bn,由于以ak、bk為相鄰兩邊的矩形內(nèi)最大圓即為以ak、bk中較小的邊為直徑的圓,從而求出以ak、bk為相鄰兩邊的矩形內(nèi)最大圓面積.
解答:解:∵數(shù)列{an}是首項(xiàng)為50,公差為2的等差數(shù)列,
∴an=50+2(n-1)=2n+48,
∵{bn}是首項(xiàng)為10,公差為4的等差數(shù)列,
∴bn=10+4(n-1)=4n+6,
因?yàn)閚≤21,則2n+48>4n+6,從而an≥bn
由于以ak、bk為相鄰兩邊的矩形內(nèi)最大圓即為以ak、bk中較小的邊為直徑的圓,
∴以ak、bk為相鄰兩邊的矩形內(nèi)最大圓面積為Sk=(2k+3)2π.
故答案為:(2k+3)2π.
點(diǎn)評(píng):本小題主要考查等差數(shù)列、圓的面積的應(yīng)用、數(shù)列與解析幾何的綜合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力與轉(zhuǎn)化思想,是一道綜合題,有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是首項(xiàng)為1公比為3的等比數(shù)列,把{an}中的每一項(xiàng)都減去2后,得到一個(gè)新數(shù)列{bn},{bn}的前n項(xiàng)和為Sn,對(duì)任意的n∈N*,下列結(jié)論正確的是( 。
A、bn+1=3bn,且Sn=
1
2
(3n-1)
B、bn+1=3bn-2,且Sn=
1
2
(3n-1)
C、bn+1=3bn+4,且Sn=
1
2
(3n-1)-2n
D、bn+1=3bn-4,且Sn=
1
2
(3n-1)-2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是首項(xiàng)為0的遞增數(shù)列,fn(x)=|sin
1
n
(x-an)|,x∈[an,an+1](n∈N*)
,滿足:對(duì)于任意的b∈[0,1),fn(x)=b總有兩個(gè)不同的根,則{an}的通項(xiàng)公式為
an=
n(n-1)
2
π
an=
n(n-1)
2
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是首項(xiàng)為1,公差為2的等差數(shù)列,對(duì)每一個(gè)k∈N*,在ak與ak+1之間插入2k-1個(gè)2,得到新數(shù)列{bn},設(shè)An、Bn分別是數(shù)列{an}和{bn}的前n項(xiàng)和.
(1)a10是數(shù)列{bn}的第幾項(xiàng);
(2)是否存在正整數(shù)m,使Bm=2010?若不存在,請(qǐng)說明理由;否則,求出m的值;
(3)設(shè)am是數(shù)列{bn}的第f(m)項(xiàng),試比較:Bf(m)與2Am的大小,請(qǐng)?jiān)敿?xì)論證你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣東)設(shè)數(shù)列{an}是首項(xiàng)為1,公比為-2的等比數(shù)列,則a1+|a2|+a3+|a4|=
15
15

查看答案和解析>>

同步練習(xí)冊(cè)答案