分析 (1)根據(jù)導數(shù)和函數(shù)的單調性的關系即可求出;
(2)把原函數(shù)f(x)=alnx+x2求導,分a≥0和a<0討論打哦函數(shù)的單調性,特別是當a<0時,求出函數(shù)f(x)在[1,e]上的最小值及端點處的函數(shù)值,然后根據(jù)最小值和F(e)的值的符號討論在x∈[1,e]時,方程f(x)=0根的個數(shù);
(3)問題轉化為等價于函數(shù)h(x)=f(x)+$\frac{1}{x}$在$x∈[{\frac{1}{e},\;\frac{1}{2}}]$時是減函數(shù),結合函數(shù)的單調性得到a≤-$\frac{1}{x}$2x2,求出a的范圍即可.
解答 解:(1)當a=-2時,f(x)=-2lnx+x2,定義域為(0,+∞),
∴f′(x)=-$\frac{2}{x}$+2x=$\frac{2{x}^{2}-2}{x}$=$\frac{2(x+1)(x-1)}{x}$,
當f′(x)<0,解得0<x<1,當f′(x)>0,解得x>1,
∴f(x)得單調遞減區(qū)間為(0,1),遞增區(qū)間為(1,+∞).
(2)方程f(x)=0根的個數(shù)等價于方程-a=$\frac{{x}^{2}}{lnx}$根的個數(shù).
設g(x)=$\frac{{x}^{2}}{lnx}$,
∴g′(x)=$\frac{2xlnx-x}{l{n}^{2}x}$=$\frac{x(2lnx-1)}{l{n}^{2}x}$,
當x∈(1,$\sqrt{e}$)時,g′(x)<0,函數(shù)g(x)遞減,
當x∈($\sqrt{e}$,e]時,g′(x)>0,函數(shù)g(x)遞增.
又g(e)=e2,g($\sqrt{e}$)=2e,作出y=g(x)與直線y=-a的圖象如圖,
由圖象知:
當2e<-a≤e2時,即-e2≤a≤-2時,方程f(x)=0有2個相異的根;
當a<-e2或a=-2e時,方程f(x)=0有1個根;
當a>2e時,方程f(x)=0有0個根.
(3)當a>0時,$f'(x)=\frac{a}{x}+2x>0$,
f(x)在$x∈[{\frac{1}{e},\;\frac{1}{2}}]$上是增函數(shù),又函數(shù)y=$\frac{1}{x}$是減函數(shù),
不妨設$\frac{1}{e}≤{x_1}<\;{x_2}≤\frac{1}{2}$,
則$|{f({x_1})-f({x_2})}|<|{\frac{1}{x_1}-\frac{1}{x_2}}|$等價于$f({x_2})-f({x_1})<\frac{1}{x_1}-\frac{1}{x_2}$,
即$f({x_2})+\frac{1}{x_2}<f({x_1})+\frac{1}{x_1}$,
令h(x)=f(x)+$\frac{1}{x}$,
∴h′(x)=$\frac{a}{x}$+2x-$\frac{1}{{x}^{2}}$≤0恒成立,即a≤$\frac{1}{x}$-2x2在$x∈[{\frac{1}{e},\;\frac{1}{2}}]$時恒成立,
設φ(x)=$\frac{1}{x}$-2x2,
∴$φ(x)=\frac{1}{x}-2{x^2}$在$x∈[{\frac{1}{e},\;\frac{1}{2}}]$時是減函數(shù).
∴$a≤φ(\frac{1}{2})=\frac{3}{2}$,
又a>0,
∴實數(shù)a的取值范圍是(0,$\frac{3}{2}$].
點評 本題考查了利用導數(shù)求閉區(qū)間上的最值,考查了根的存在性及根的個數(shù)的判斷,考查了分類討論的數(shù)學思想方法和數(shù)學轉化思想方法,訓練了構造函數(shù)求變量的取值范圍,屬于難題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2m>2n | B. | 0.5m<0.5n | ||
C. | ${log_2}^m>{log_2}^n$ | D. | ${log_{0.5}}^m>{log_{0.5}}^n$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 垂直于同一平面的兩條直線平行 | B. | 垂直于同一直線的兩條直線平行 | ||
C. | 沒有公共點的兩條直線平行 | D. | 平行于同一平面的兩條直線平行 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y軸對稱 | B. | 直線y=-x對稱 | C. | 直線y=x對稱 | D. | 坐標原點對稱 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com