已知數(shù)據(jù)x1,x2,…,x10的平均數(shù)=20,方差s2=0.015.求:
(1)3x1,3x2,…,3x10的平均數(shù)和方差;
(2)4x1-2,4x2-2,…,4x10-2的平均數(shù)和方差.
【答案】分析:(1)要求平均數(shù)就是把10個(gè)數(shù)字相加然后除以10,根據(jù)方差的求法即每個(gè)數(shù)都減去平均數(shù)的平方和除以10,然后利用整體代入法即可求出;(2)平均數(shù)和方差同理可得.
解答:解:(1)′=(3x1+3x2+…+3x10
=(x1+x2+…+x10)=3=3×20=60;
s′2=[(3x1-32+(3x2-32+…+(3x10-32]
=[(x1-2+(x2-2+…+(x10-2]
=9s2=9×0.015=0.135.
(2)″=4-2=4×20-2=78;
s″2=16s2=16×0.015=0.24.
點(diǎn)評(píng):對(duì)于一組數(shù)據(jù),通常要求的是這組數(shù)據(jù)的方差,中位數(shù),平均數(shù),題目分別表示一組數(shù)據(jù)的特征,這樣的問(wèn)題可以出現(xiàn)在選擇題或填空題.考查最基本的知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)據(jù)x1,x2,…,x10的平均數(shù)
.
x
=20,方差s2=0.015.求:
(1)3x1,3x2,…,3x10的平均數(shù)和方差;
(2)4x1-2,4x2-2,…,4x10-2的平均數(shù)和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)為3,標(biāo)準(zhǔn)差為4,則數(shù)據(jù)5x1-1,5x2-1,5x3-1,5x4-1,5x5-1的平均數(shù)和方差分別為
14,400
14,400

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)據(jù)x1,x2,x3,…,x10的平均數(shù)為6,標(biāo)準(zhǔn)差為
2
,則數(shù)據(jù)x1,x2,…,x5的平均數(shù)的取值范圍是
6-
2
≤a≤6+
2
6-
2
≤a≤6+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)據(jù)x1,x2,…,xn,的和Sn滿足Sn=n2+n,則x1,x2,…,xn,的方差=
1
3
(n+1)(13n+5)
1
3
(n+1)(13n+5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•煙臺(tái)三模)已知數(shù)據(jù)x1,x2,x3,…,xn是上海普通職工n(n≥3,n∈N*)個(gè)人的年收入,設(shè)這n個(gè)數(shù)據(jù)的中位數(shù)為x,平均數(shù)為y,方差為z,如果再加上世界首富的年收入xn+1,則這n+1個(gè)數(shù)據(jù)中,下列說(shuō)法正確的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案