棱長為2的正四面體S-ABC中,M為SB上的動(dòng)點(diǎn),則AM+MC的最小值為   
【答案】分析:由題意可以知道AM+MC的最小值就是正四面體側(cè)面展開圖中AC的長度,利用正三角形的性質(zhì)就可以求出其值.
解答:解:展開棱長為2的正四面體S-ABC的側(cè)面,如圖.
由正三角形的性質(zhì),得
AC=2×=
故答案為
點(diǎn)評:本題考查了最短路徑問題,勾股定理的運(yùn)用,正方形的性質(zhì)的運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)D是棱長為4的正四面體P1P2P3P4及其內(nèi)部的點(diǎn)構(gòu)成的集合,點(diǎn)P0是正四面體P1P2P3P4的中心,若集合S={P∈D||PP0|≤|PPi|,i=1,2,3,4},則集合S表示的區(qū)域的體積是
101
2
24
101
2
24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

棱長為2的正四面體S-ABC中,M為SB上的動(dòng)點(diǎn),則AM+MC的最小值為
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

棱長為2的正四面體S-ABC中,M為SB上的動(dòng)點(diǎn),則AM+MC的最小值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省荊門市鐘祥市高三(上)11月聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

設(shè)D是棱長為4的正四面體P1P2P3P4及其內(nèi)部的點(diǎn)構(gòu)成的集合,點(diǎn)P是正四面體P1P2P3P4的中心,若集合S={P∈D||PP|≤|PPi|,i=1,2,3,4},則集合S表示的區(qū)域的體積是   

查看答案和解析>>

同步練習(xí)冊答案