【題目】如圖,在等腰梯形ABCD中,,E,F分別為ABCD的中點,MDF中點.現(xiàn)將四邊形BEFC沿EF折起,使平面平面AEFD,得到如圖所示的多面體.在圖中,

1)證明:;

2)求二面角E-BC-M的余弦值.

【答案】1)見解析;(2.

【解析】

1推導出,折疊后,,,從而平面DCF,由此能證明
2F為坐標原點,分別以FDFCFE所在直線為xy,z軸,建立空間直角坐標系,利用向量法能求出二面角的余弦值.

(1)證明:由題意,在等腰梯形ABCD中,

分別為AB,CD的中點,

,,

折疊后,,

,

平面DCF,

平面DCF,

(2)

平面平面AEFD,平面平面,且
平面BEFC,

,

,CF,EF兩兩垂直,
F為坐標原點,分別以FD,FCFE所在直線為x,y,z軸,建立空間直角坐標系,


,
0,2,1,,
2,1,,

設平面MBC的法向量y,,
,取,得,

設平面EBC的法向量,


二面角的余弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)當時,求函數(shù)的單調(diào)減區(qū)間;

(2)若有三個不同的零點,求的取值范圍;

(3)設,若無極大值點,有唯一的一個極小值點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若曲線在點處的切線與直線垂直,求實數(shù)的取值;

(Ⅱ)求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)記.當時,函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某果園基地培育出一種特色水果,要在某一季節(jié)內(nèi)采摘一批這種水果銷往A市,每售出1噸這種水果獲利800元,未售出的水果每噸虧損400元,根據(jù)去年市場調(diào)研數(shù)據(jù)統(tǒng)計,該季節(jié)A市對這種水果的市場需求量t(單位:噸,100≤t≤150)的頻率分布直方圖如圖所示.現(xiàn)該果園計劃采摘140噸這種水果運往A市,經(jīng)銷這種水果的利潤Q(單位:元)

(1)求Qt的函數(shù)表達式;

(2)視頻率為概率,求利潤Q的分布列及數(shù)學期望.(每組數(shù)據(jù)以區(qū)間的中點值為代表).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 )的左右焦點分別為, ,若橢圓上一點滿足,且橢圓過點,過點的直線與橢圓交于兩點 .

(1)求橢圓的方程;

(2)過點軸的垂線,交橢圓,求證: , 三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,其中實數(shù)滿足,若的最大值為12,則實數(shù)=________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中正確的個數(shù)是(

1)平面與平面都相交,則這三個平面有2條或3條交線

2)如果平面外有兩點到平面的距離相等,則直線

3)直線不平行于平面,則不平行于內(nèi)任何一條直線

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】最近上映的電影《后來的我們》引起了一陣熱潮,為了了解大眾對這部電影的評價,隨機訪問了50名觀影者,根據(jù)這50人對該電影的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為,,,.

1)求頻率分布直方圖中的值,并估計觀影者對該電影評分不低于80的概率;

2)由頻率分布直方圖估計評分的中位數(shù)(保留兩位小數(shù))與平均數(shù);

3)從評分在的觀影者中隨機抽取2人,求至少有一人評分在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】商店出售一種成本為40元/千克的產(chǎn)品,據(jù)市場分析,若按50元/千克銷售,一個月能售出500千克,銷售單價每漲1元,月銷售量就減少10千克,設銷售單價為元/千克,月銷售利潤為.

(1)當銷售單價定為55元/千克時,計算銷售量和月銷售利潤;

(2)求之間的函數(shù)關系式,并說明當銷售單價應定為多少時,月銷售利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習冊答案