為預(yù)防H1N1病毒爆發(fā),某生物技術(shù)公司研制出一種新流感疫苗,為測試該疫苗的有效性(若疫苗有效的概率小于90%,則認為測試沒有通過),公司選定2000個流感樣本分成三組,測試結(jié)果如下表:
分組A組B組C組
疫苗有效673ab
疫苗無效7790c
已知在全體樣本中隨機抽取1個,抽到B組疫苗有效的概率是0.33.
(I)現(xiàn)用分層抽樣的方法在全體樣本中抽取360個測試結(jié)果,問應(yīng)在C組抽取樣本多少個?
(II)已知b≥465,c≥30,求通過測試的概率.
【答案】分析:(I)根據(jù)分層抽樣的定義,按每層中的比例即可計算出C組抽取樣本的個數(shù);
(II)由(I)b+c=500,再結(jié)合題設(shè)條件b≥465,c≥30列舉出所有可能的(b,c)組合的個數(shù)及沒有通過測試的(b,c)組合的個數(shù),再由概率公式及概率的性質(zhì)求出通過測試的概率.
解答:解:(I)∵,∴a=660…(2分)
∵b+c=2000-673-77-660-90=500,…(4分)
∴應(yīng)在C組抽取樣個數(shù)是(個);    …(6分)
(II)∵b+c=500,b≥465,c≥30,∴(b,c)的可能是
(465,35),(466,34),(467,33),(468,32),(469,31),(470,30),…(8分)
若測試沒有通過,則77+90+c>2000×(1-90%)=200,c>33,
(b,c)的可能性是(465,35),(466,34),
通過測試的概率是.                   …(12分)
點評:本題考查列舉法計算基本事件及事件發(fā)生的概率,分層抽樣的方法,屬于概率中的基本題型
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•丹東模擬)為預(yù)防H1N1病毒爆發(fā),某生物技術(shù)公司研制出一種新流感疫苗,為測試該疫苗的有效性(若疫苗有效的概率小于90%,則認為測試沒有通過),公司選定2000個流感樣本分成三組,測試結(jié)果如下表:
分組 A組 B組 C組
疫苗有效 673 a b
疫苗無效 77 90 c
已知在全體樣本中隨機抽取1個,抽到B組疫苗有效的概率是0.33.
(I)現(xiàn)用分層抽樣的方法在全體樣本中抽取360個測試結(jié)果,問應(yīng)在C組抽取樣本多少個?
(II)已知b≥465,c≥30,求通過測試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東三模)為預(yù)防H1N1病毒爆發(fā),某生物技術(shù)公司研制出一種新流感疫苗,為測試該疫苗的有效性(若疫苗有效的概率小于90%,則認為測試沒有通過),公司選定2000個流感樣本分成三組,測試結(jié)果如下表:
A組 B組 C組
疫苗有效 673 x y
疫苗無效 77 90 z
 已知在全體樣本中隨機抽取1個,抽到B組疫苗有效的概率是0.33.
(Ⅰ)求x的值;
(Ⅱ)現(xiàn)用分層抽樣的方法在全體樣本中抽取360個測試結(jié)果,問應(yīng)在C組抽取多少個?
(Ⅲ)已知y≥465,z≥30,求不能通過測試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年丹東市四校協(xié)作體高三摸底測試數(shù)學(xué)文(零診) 題型:解答題

(本小題滿分12分)為預(yù)防H1N1病毒爆發(fā),某生物技術(shù)公司研制出一種新流感

疫苗,為測試該疫苗的有效性(若疫苗有效的概率小于90%,則認為測試沒有通過),公司

選定2000個流感樣本分成三組,測試結(jié)果如下表:

分組

A

B

C

疫苗有效

673

疫苗無效

77

90

已知在全體樣本中隨機抽取1個,抽到B組疫苗有效的概率是0.33.

(I)現(xiàn)用分層抽樣的方法在全體樣本中抽取360個測試結(jié)果,問應(yīng)在C組抽取樣本多少個?

(II)已知,,求通過測試的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黑龍江省模擬題 題型:解答題

為預(yù)防H1N1 病毒爆發(fā),某生物技術(shù)公司研制出一種新流感疫苗,為測試該疫苗的有效性(若疫苗有效的概率小于90%,則認為測試沒有通過),公司選定2000個流感樣本分成三組,測試結(jié)果如下表。已知在全體樣本中隨機抽取1個,抽到B組疫苗有效的概率是0.33.
(1)現(xiàn)用分層抽樣的方法在全體樣本中抽取360個測試結(jié)果,問應(yīng)在C組抽取樣本多少個? 
(2)已知b≥465,c≥30,求通過測試的概率.

查看答案和解析>>

同步練習(xí)冊答案