【題目】已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且2csinBcosA﹣bsinC=0.
(1)求角A;
(2)若△ABC的面積為 ,b+c=5,求a.

【答案】
(1)解:在△ABC中,由2csinBcosA﹣bsinC=0及正弦定理得:2sinCsinBcosA﹣sinBsinC=0,

∵0<B<π,0<C<π,sinBsinC≠0,

∴2cosA=1,即

又0<A<π,


(2)解: ,又∵ ,∴ ,∴bc=4,

由余弦定理得a2=b2+c2﹣2bccosA=(b+c)2﹣3bc=25﹣12=13,


【解析】(1)由2csinBcosA﹣bsinC=0及正弦定理求得2cosA=1,即 ,從而求得A的值.(2)由 ,求得bc=4,再由余弦定理求得a2的值,可得a的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)判斷直線能否與曲線相切,并說明理由;

(Ⅱ)若不等式有且僅有兩個(gè)整數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:若兩個(gè)二次曲線的離心率相等,則稱這兩個(gè)二次曲線相似.如圖,橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,右頂點(diǎn)為A,以其短軸的兩個(gè)端點(diǎn)B1 , B2及其一個(gè)焦點(diǎn)為頂點(diǎn)的三角形是邊長為6的正三角形,M是C上異于B1 , B2的一個(gè)動(dòng)點(diǎn),△MB1B2的重心為G,G點(diǎn)的軌跡記為C1

(1)(i)求C的方程;
(ii)求證:C1與C相似;
(2)過B1點(diǎn)任作一直線,自下至上依次與C1、x軸的正半軸、C交于不同的四個(gè)點(diǎn)P,Q,R,S,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)定義在實(shí)數(shù)集R上的奇函數(shù),當(dāng)x≥0時(shí),函數(shù)y=f(x)的圖象如圖所示(拋物線的一部分).

(1)在原圖上畫出x<0時(shí)函數(shù)y=f(x)的示意圖;
(2)求函數(shù)y=f(x)的解析式(不要求寫出解題過程);
(3)寫出函數(shù)y=|f(x)|的單調(diào)遞增區(qū)間(不要求寫出解題過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)圖象在點(diǎn)e為自然對數(shù)的底數(shù))處的切線斜率為3.

(1)求實(shí)數(shù)的值;

(2)若,且對任意恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如表中給出了2011年~2015年某市快遞業(yè)務(wù)總量的統(tǒng)計(jì)數(shù)據(jù)(單位:百萬件)

年份

2011

2012

2013

2014

2015

年份代碼

1

2

3

4

5

快遞業(yè)務(wù)總量

34

55

71

85

105


(1)在圖中畫出所給數(shù)據(jù)的折線圖;

(2)建立一個(gè)該市快遞量y關(guān)于年份代碼x的線性回歸模型;
(3)利用(2)所得的模型,預(yù)測該市2016年的快遞業(yè)務(wù)總量.
附:回歸直線方程的斜率和截距的最小二乘估計(jì)公式分別為:
斜率: ,縱截距:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知中心在原點(diǎn),離心率為的橢圓的一個(gè)焦點(diǎn)為圓 的圓心.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)是橢圓上一點(diǎn),過作兩條斜率之積為的直線 ,當(dāng)直線 都與圓相切時(shí),求的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C和y軸相切,圓心在直線x﹣3y=0上,且被直線y=x截得的弦長為 ,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩家快遞公司其“快遞小哥”的日工資方案如下:甲公司規(guī)定底薪元,每單抽成元;乙公司規(guī)定底薪元,每日前單無抽成,超過單的部分每單抽成

(1)設(shè)甲乙快遞公司的“快遞小哥”一日工資(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式為,求;

(2)假設(shè)同一公司的“快遞小哥”一日送貨單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名“快遞小哥”,并記錄其天的送貨單數(shù),得到如下條形圖:

若將頻率視為概率,回答下列問題:

①記乙快遞公司的“快遞小哥”日工資為(單位:元),求的分布列和數(shù)學(xué)期望;

②小趙擬到兩家公司中的一家應(yīng)聘“快遞小哥”的工作,如果僅從日收入的角度考慮,請你利用所學(xué)的統(tǒng)計(jì)學(xué)知識為他作出選擇,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案