已知數(shù)列a1=1,an+1=an2+4an+2,
(1)求數(shù)列{an}的通項公式.
(2)設bn=
1
an+1
+
1
an+3
,設數(shù)列{bn}的前n項的和Sn.試證明:Sn<1.
分析:(1))由已知數(shù)列a1=1,an+1=an2+4an+2,變形為an+1+2=(an+2)2>0,兩邊取對數(shù)可得ln(an+1+2)=2ln(an+2),轉化為等比數(shù)列即可得出;
(2)利用(1)變形,再利用“裂項求和”即可得出.
解答:解:(1)∵數(shù)列a1=1,an+1=an2+4an+2,
an+1+2=(an+2)2>0,
∴兩邊取對數(shù)可得ln(an+1+2)=2ln(an+2)
∴數(shù)列{ln(an+2)}是以ln(a1+2)=ln3為首項,2為公比的等比數(shù)列.
ln(an+2)=2n-1ln3,
an+2=32n-1,即an=32n-1-2
(2)∵an+1=
a
2
n
+4an+2
,
an+1+1=
a
2
n
+4an+3
=(an+1)(an+3),
1
an+1+1
=
1
(an+1)(an+3)
=
1
2
(
1
an+1
-
1
an+3
)
,
1
an+3
=
1
an+1
-
2
an+1+1

∴bn=
1
an+1
+
1
an+3
=2(
1
an+1
-
1
an+1+1
)
,
∴Sn=2[(
1
a1+1
-
1
a2+1
)+(
1
a2+1
-
1
a3+1
)+
…+(
1
an+1
-
1
an+1+1
)]

=2(
1
a1+1
-
1
an+1+1
)
=2(
1
2
-
1
32n-1
)
=1-
2
32n-1

∵n∈N*,∴32n-1≥32-1=8>0,
∴Sn<1.
點評:正確變形轉化為等比數(shù)列、“裂項求和”等是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列a1,a2,a3,a4,a5的各項均不等于0和1,此數(shù)列前n項的和為Sn,且滿足2Sn=an-an2(1≤n≤5),則滿足條件的數(shù)列共有( 。
A、2個B、6個C、8個D、16個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•泰安二模)已知數(shù)列an+1=an+nan中,a1=1,若利用如圖所示的程序框圖計算并輸出該數(shù)列的第10項,則判斷框內的條件可以是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列a1=1,an+1=2an+3,則{an}前15項的和為(   )

A.217-49                              B.217-45

C.215-45                              D.215-49

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年全國百所名校高三(上)期初數(shù)學示范卷(文科)(解析版) 題型:選擇題

已知數(shù)列a1,a2,a3,a4,a5的各項均不等于0和1,此數(shù)列前n項的和為Sn,且滿足2Sn=an-an2(1≤n≤5),則滿足條件的數(shù)列共有( )
A.2個
B.6個
C.8個
D.16個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 已知數(shù)列a1=1,a2=3,a3=5,a4=7,則適合此數(shù)列的一個通項公式為(    )

A、an=n-1                   B、an=2n-1                C、an=n+1                 D、an=2n+1

查看答案和解析>>

同步練習冊答案