4.函數(shù)f(x)=|x+1|的單調(diào)遞增區(qū)間為[-1,+∞).

分析 易知函數(shù)y=|x|的單調(diào)區(qū)間,再根據(jù)函數(shù)函數(shù)y=|x+1|和y=|x|圖象之間的關(guān)系,容易得到答案.

解答 解:函數(shù)y=|x+1|的圖象是由函數(shù)y=|x|的圖象向左平移1個單位得到的.
有函數(shù)的性質(zhì)易知,函數(shù)y=|x|的單調(diào)增區(qū)間是[0,+∞),
所以函數(shù)y=|x+1|的單調(diào)增區(qū)間是[-1,+∞).
故答案為:[-1,+∞).

點(diǎn)評 考查從圖象變換和數(shù)形結(jié)合的角度解決問題的能力.是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知tanα、tanβ是方程7x2-8x+1=0的兩個根,則tan(α+β)的值為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=x2+2ax+1在區(qū)間[2,+∞)上是增函數(shù),那么實(shí)數(shù)a的取值范圍是[-2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=b•ax(a>0,且a≠1,b∈R)的圖象經(jīng)過點(diǎn)A(1,6),B(3,24).
(1)設(shè)g(x)=$\frac{1}{f(x)+3}$-$\frac{1}{6}$,確定函數(shù)g(x)的奇偶性;
(2)若對任意x∈(-∞,1],不等式($\frac{a}$)x≥2m+1恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.計(jì)算lg2+lg5+2log510-log520的值為( 。
A.21B.20C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將一條5米長的繩子隨機(jī)的切斷為兩段,則兩段繩子都不短于1米的概率為(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{x}{ax+b}$,a,b∈R,a≠0,b≠0,f(1)=$\frac{1}{2}$,且方程f(x)=x有且僅有一個實(shí)數(shù)解;
(1)求a、b的值;
(2)當(dāng)x∈($\frac{1}{4}$,$\frac{1}{2}$]時,不等式(x+1)•f(x)>m(m-x)-1恒成立,求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)的圖象如圖所示,則不等式x•f(x)>0的解集為( 。
A.(-∞,-1)∪(2,+∞)B.(-∞,-1)∪(0,2)C.(-1,0)∪(2,+∞)D.(-1,0)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象與y軸的交點(diǎn)為($0,\frac{3}{2}$),它在y軸右側(cè)的第一個最高點(diǎn)和最低點(diǎn)分別為(x0,3),(x0+2π,-3).
(1)求函數(shù)y=f(x)的解析式;
(2)該函數(shù)的圖象可由y=sinx(x∈R)的圖象經(jīng)過怎樣的平移和伸縮變換得到?
(3)求這個函數(shù)的單調(diào)遞增區(qū)間和對稱中心.

查看答案和解析>>

同步練習(xí)冊答案