已知點P(6,a)在過兩點A(-1,3),B(5,-2)的直線上,則a的值為
 
考點:三點共線
專題:直線與圓
分析:可以求出AB的斜率,再求BP的斜率,二者相等即可確定a的值.
解答: 解:兩點A(1,-1)、B(3,3),點C(5,a)在直線AB上,
∴kAB=kBP即:
-2-3
5+1
=
a+2
6-5
 解得 a=-
17
6
,
故答案為:-
17
6
點評:本題考查三點共線問題,可以用斜率解答,點在直線上解答,還可以用點到直線的距離為0解答,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn=
1
a
+
2
a2
+
3
a3
+…+
n
an
,則當a=2時,S6=( 。
A、
9
4
B、
17
8
C、2
D、
15
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義運算:a*b=
b(當a≤b時)
a(當a>b時)
,對于函數(shù)f(x)和g(x),函數(shù)|f(x)-g(x)|在閉區(qū)間[a,b]上的最大值稱為f(x)與g(x)在閉區(qū)間[a,b]上的“絕對差”,記為
a≤x≤b
(f(x),g(x)),則
0≤x≤
π
2
(sinx*cosx,1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-|x|+2a-1 (a為實常數(shù)).
(1)判斷函數(shù)f(x)的奇偶性并給出證明;
(2)若函數(shù)f(x)在區(qū)間[1,2]上是增函數(shù),求實數(shù)a的取值范圍;
(3)若a>0,設(shè)g(x)=|f(x)-x|在區(qū)間[-2,2]上的最大值為h(a),求h(a)的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-3≤x<4},B={x|-2≤x≤5},則A∩B=(  )
A、{x|-3≤x≤5}
B、{x|-3≤x<4}
C、{x|-2≤x≤5}
D、{x|-2≤x<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:sin
π
6
-cos2
π
4
cosπ-
1
3
tan2
π
3
-cosπ+sin
π
2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線L:y=m與雙曲線
x2
9
-
y2
25
=1的兩交點為P、Q,且OP⊥OQ,求m與P、Q的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinθ
sin2θ
+cosθ
cos2θ
=-1(θ≠
2
k∈z),判斷θ是第幾象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(-4,4)上的奇函數(shù)單調(diào)遞減,且f(4-2x)+f(x2_4)<f(0),求x的范圍.

查看答案和解析>>

同步練習(xí)冊答案