已知圓O1:x2+6x+y2+5=0,圓O2:x2+y2-4y+3=0,則圓O1和圓O2的位置關(guān)系是( 。
A、相交B、相離C、外切D、內(nèi)含
考點:圓與圓的位置關(guān)系及其判定
專題:直線與圓
分析:求出兩個圓的圓心和半徑,根據(jù)圓圓之間的位置關(guān)系的條件即可得到結(jié)論.
解答: 解:圓O1:x2+6x+y2+5=0的標(biāo)準(zhǔn)方程為(x+3)2+y2=4,圓心為O1(-3,0),半徑為R=2,
圓O2:x2+y2-4y+3=0的標(biāo)準(zhǔn)方程為x2+(y-2)2=1,圓心為O2(0,2),半徑為r=1,
則|O1O2|=2-(-3)=5>2+1=R+r,
故圓O1和圓O2的位置關(guān)系是相離,
故選:B
點評:本題主要考查圓與圓的位置關(guān)系的判斷,求出圓的圓心和半徑是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

春節(jié)期間,小樂對家庭中的六個成員收到的祝福短信數(shù)量進(jìn)行了統(tǒng)計:
家庭成員爺爺奶奶爸爸媽媽哥哥小樂
收到短信數(shù)量x4216220140350a
(1)若
.
x
=138,求a;
(2)在六位家庭成員中任取兩位,收到的短信數(shù)均超過100的概率為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知三角形ABC的頂點坐標(biāo)為A(-1,5)、B(-2,-1)、C(4,3),M是BC邊上的中點.
①求AB邊所在的直線方程并化為一般式;
②求中線AM的長.
(2)已知圓C的圓心是直線2x+y+1=0和x+3y-4=0的交點,且與直線3x+4y+17=0相切,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
、
b
、
c
是任意的非零平面向量,且相互不共線,則:
①(
a
b
c
-(
c
a
b
=
0
; ②|
a
|-|
b
|<|
a
-
b
|③(
b
c
a
-(
c
a
b
不與
c
垂直; ④(3
a
+2
b
)•(3
a
-2
b
)=9|
a
|2-4|
b
|2中,是真命題的有( 。
A、①②B、②③C、③④D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓心在平面直角坐標(biāo)系的原點,半徑為1的圓上兩個動點M、N,同時從P(1,0)點出發(fā),沿圓周運動,M點按逆時針方向旋轉(zhuǎn)
π
6
弧度/秒,N點按順時針放向旋轉(zhuǎn)
π
3
弧度/秒.
(1)試求它們出發(fā)后第三次相遇時的位置和各自走過的弧度;
(2)若將“N點按順時針方向旋轉(zhuǎn)
π
3
弧度/秒”改為“N點按逆時針方向旋轉(zhuǎn)
π
3
弧度/秒”,其他條件不變,試求出它們出發(fā)后第三次相遇時的位置和各自走過的弧度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列中,Sn=48,S2n=60,則S3n等于( 。
A、63B、75
C、108D、183

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項a1=1,前n項和為Sn,且Sn+1=4an+2(n∈N*
(1)求證:{an+1-2an}成等比數(shù)列
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:圓C:x2+y2-2y-4=0,直線l:mx-y+1=m.
(1)求證:對于任意的m∈R,直線l與圓C恒有兩個不同的交點;
(2)若直線l與圓C交于A、B兩點,|AB|=
17
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入n的值為8,則輸入s的值為
 

查看答案和解析>>

同步練習(xí)冊答案