對(duì)任意xR,函數(shù)f(x)滿足f(x+1)= + ,設(shè)an=[f(n)]2-f(n),數(shù)列{an}的前15項(xiàng)的和為,f(15)=    .

 

【答案】

【解析】因?yàn)?/span>f(x+1)=+,

所以f(x+1)-=0,

f(x+1).

兩邊平方得[f(x+1)-]2=f(x)-[f(x)]2,

[f(x+1)]2-f(x+1)+=f(x)-[f(x)]2,

[f(x+1)]2-f(x+1)+[f(x)]2-f(x)=-,

an+1+an=-,

即數(shù)列{an}的任意相鄰兩項(xiàng)之和為-,

所以S15=7×(-)+a15=-,a15=-.

所以a15=[f(15)]2-f(15)=-,

解得f(15)=f(15)=(舍去).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

同時(shí)具有下列性質(zhì):“①對(duì)任意x∈R,f(x+π)=f(x)恒成立;②圖象關(guān)于直線x=
π
3
對(duì)稱(chēng)”的函數(shù)可以是( 。
A、f(x)=sin(
x
2
+
π
6
B、f(x)=sin(2x-
π
6
C、f(x)=cos(2x-
π
6
D、f(x)=cos(2x+
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的定義域?yàn)镽,f(-1)=2,對(duì)任意x∈R,f′(x)>2,則f(x)<2x+4的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c.
(1)若f(-1)=0,試判斷函數(shù)f(x)零點(diǎn)的個(gè)數(shù);
(2)是否存在a,b,c∈R,使f(x)同時(shí)滿足以下條件:
①對(duì)任意x∈R,f(-1+x)=f(-1-x),且f(x)≥0;
②對(duì)任意x∈R,都有0≤f(x)-x≤
1
2
(x-1)2.若存在,求出a,b,c的值;若不存在,請(qǐng)說(shuō)明理由.
(3)若對(duì)任意x1、x2∈R且x1<x2,f(x1)≠f(x2),試證明:存在x0∈(x1,x2),使f(x0)=
1
2
[f(x1)+f(x2)]成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義域?yàn)镽的函數(shù),有下列命題:
①對(duì)任意x∈R,f(x+1)=f(1-x)成立,那么函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱(chēng);
②對(duì)任意x∈R,f(x)+f(1-x)=2成立,那么函數(shù)f(x)的圖象關(guān)于點(diǎn)(1,1)對(duì)稱(chēng);
③對(duì)任意x∈R,f(x)+f(x+1)=0成立,那么函數(shù)f(x)是周期為2的周期函數(shù);
④對(duì)任意x∈R,f(1-x)+f(x-1)=0成立,那么函數(shù)f(x)是奇函數(shù).
其中正確的命題的序號(hào)是
 
.(把你認(rèn)為正確的命題的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案