已知函數(shù)
在區(qū)間
內(nèi)單調(diào),則
的最大值為__________.
試題分析:求導(dǎo)得:
,由此可知
在
遞減,在
內(nèi)遞增,所以
的最大值為
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)函數(shù)
.
(1)求
的單調(diào)區(qū)間和極值;
(2)若
,當(dāng)
時(shí),
在區(qū)間
內(nèi)存在極值,求整數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)
處的切線的斜率是
.
(1)求實(shí)數(shù)
的值;
(2)求
在區(qū)間
上的最大值;
(3)對任意給定的正實(shí)數(shù)
,曲線
上是否存在兩點(diǎn)P、Q,使得
是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
是定義在
上的奇函數(shù),當(dāng)
時(shí),
(其中e是自然界對數(shù)的底,
)
(1)求
的解析式;
(2)設(shè)
,求證:當(dāng)
時(shí),且
,
恒成立;
(3)是否存在實(shí)數(shù)a,使得當(dāng)
時(shí),
的最小值是3 ?如果存在,求出實(shí)數(shù)a的值;如果不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(1)當(dāng)
時(shí),求
的單調(diào)區(qū)間;
(2)當(dāng)
時(shí),若存在
, 使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)f(x)=x2-(1+2a)x+aln x(a為常數(shù)).
(1)當(dāng)a=-1時(shí),求曲線y=f(x)在x=1處切線的方程;
(2)當(dāng)a>0時(shí),討論函數(shù)y=f(x)在區(qū)間(0,1)上的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(1)求
在點(diǎn)
處的切線方程;
(2)證明:曲線
與曲線
有唯一公共點(diǎn);
(3)設(shè)
,比較
與
的大小, 并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(14分)(2011•陜西)設(shè)f(x)=lnx,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的單調(diào)區(qū)間和最小值;
(Ⅱ)討論g(x)與
的大小關(guān)系;
(Ⅲ)求a的取值范圍,使得g(a)﹣g(x)<
對任意x>0成立.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(1)若當(dāng)
時(shí),函數(shù)
的最大值為
,求
的值;
(2)設(shè)
(
為函數(shù)
的導(dǎo)函數(shù)),若函數(shù)
在
上是單調(diào)函數(shù),求
的取值范圍.
查看答案和解析>>