【題目】已知函數(shù) ,實數(shù)a>0.
(Ⅰ)若a=2時,求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)若x>0時,不等式f(x)<0恒成立,求實數(shù)a的最大值.

【答案】解:(Ⅰ)a=2時,f(x)=ln(1+x)﹣ ,f′(x)= = .(x>﹣1). ∴函數(shù)f(x)的單增區(qū)間為(0,+∞);單減區(qū)間為(﹣1,0).
(Ⅱ)函數(shù) ,實數(shù)a>0.f(0)=0.(x>0).
f′(x)=
=
令g(x)=(1+x)a﹣(1+x)+ax,g(0)=0.
a≤0時,可得:g(x)<0,f′(x)<0,函數(shù)f(x)單調遞減,∴f(x)<f(0)=0,滿足條件.
g′(x)=a(1+x)a﹣1+a,令x=0,則g′(0)=2a﹣1.
當0<a 時,g′(x)≤0,函數(shù)g(x)單調遞減,∴g(x)<g(0)=0.f′(x)<0,函數(shù)f(x)單調遞減,∴f(x)<f(0)=0,滿足條件.
a 時,存在x0>0,使得g′(x0)=0,g′(x)>0,函數(shù)g(x)在(0,x0)上單調遞增,g(x)>g(0).
從而f(x)在(0,x0)上單調遞增,f(x)>f(0)=0,不滿足條件,舍去.
綜上可得:a
即a的最大值為:
【解析】(Ⅰ)a=2時,f(x)=ln(1+x)﹣ ,f′(x)= .(x>﹣1).即可得出單調區(qū)間.(Ⅱ)函數(shù) ,實數(shù)a>0.f(0)=0.(x>0).可得f′(x)= .令g(x)=(1+x)a﹣(1+x)+ax,g(0)=0.對a分類討論,利用導數(shù)研究函數(shù)的單調性即可得出.
【考點精析】根據(jù)題目的已知條件,利用利用導數(shù)研究函數(shù)的單調性的相關知識可以得到問題的答案,需要掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)統(tǒng)計,截至2016年底全國微信注冊用戶數(shù)量已經(jīng)突破9.27億,為調查大學生這個微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從某市大學生中隨機抽取100位同學進行了抽樣調查,結果如下:

微信群數(shù)量(個)

頻數(shù)

頻率

0~4

0.15

5~8

40

0.4

9~12

25

13~16

a

c

16以上

5

b

合計

100

1

(Ⅰ)求a,b,c的值及樣本中微信群個數(shù)超過12的概率;
(Ⅱ)若從這100位同學中隨機抽取2人,求這2人中恰有1人微信群個數(shù)超過12的概率;
(Ⅲ)以(1)中的頻率作為概率,若從全市大學生中隨機抽取3人,記X表示抽到的是微信群個數(shù)超過12的人數(shù),求X的分布列和數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的S值為(
A.1009
B.﹣1009
C.﹣1007
D.1008

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的非負半軸為極軸,建立極坐標系,圓C的極坐標方程為ρ=4cosθ,直線l與圓C交于A,B兩點.
(1)求圓C的直角坐標方程及弦AB的長;
(2)動點P在圓C上(不與A,B重合),試求△ABP的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的左焦點為F,直線y=kx(k>0)與橢圓C交于A,B兩點,若 ,則C的離心率取值范圍為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C:(a>b>0)的左焦點為F,C與過原點的直線相交于A,B兩點,連接AF,BF.若,cos ∠ABF=,則C的離心率為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從邊長為2a的正方形鐵片的四個角各截去一個邊長為x的正方形,然后折成一個無蓋的長方體盒子,要求長方體的高度x與底面正方形邊長的比不超過正數(shù)t.

(1)把鐵盒的容積V表示為關于x的函數(shù),并指出其定義域.

(2)當x為何值時,容積V有最大值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln x-mx+n,m,n∈R.

(1)若函數(shù)f(x)的圖像在點(1,f(1))處的切線為y=2x-1,求m,n的值;

(2)求函數(shù)f(x)的單調區(qū)間;

(3)若n=0,不等式f(x)+m<0對x∈(1,+∞)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),曲線在點處的切線方程為.

1)求的解析式;

(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

同步練習冊答案