過(guò)點(diǎn)A(2,0)傾斜角為
3
4
π
的直線(xiàn)l1與過(guò)原點(diǎn)斜率為-2的直線(xiàn)l2相交于點(diǎn)B,試求△OAB外接圓半徑(其中O為坐標(biāo)原點(diǎn)).
由題可知l1:y=-x+2…(1分)    l2:y=-2x…(2分)
所以點(diǎn)B坐標(biāo)為(-2,4)…(3分)
在中,|OB|=
(-2)2+42
=2
5
∠BAO=
π
4
,…(4分)
利用正弦定理可知:2R=
2
5
sin
π
4
=2
10
…(5分)
所以△OAB外接圓半徑為
10
.                           …(6分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014屆江蘇省高二下學(xué)期期中考試數(shù)學(xué)理科試卷(解析版) 題型:解答題

(1) 在直角坐標(biāo)系xOy中,曲線(xiàn)的參數(shù)方程為為參數(shù)),M為上的動(dòng)點(diǎn),P點(diǎn)滿(mǎn)足,點(diǎn)P的軌跡為曲線(xiàn).已知在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線(xiàn)的異于極點(diǎn)的交點(diǎn)為A,與的異于極點(diǎn)的交點(diǎn)為B,求|AB|.

(2) 某旅游景點(diǎn)給游人準(zhǔn)備了這樣一個(gè)游戲,他制作了“迷尼游戲板”:在一塊傾斜放置的矩形膠合板上釘著一個(gè)形如“等腰三角形”的八行鐵釘,釘子之間留有空隙作為通道,自上而下第1行2個(gè)鐵釘之間有1個(gè)空隙,第2行3個(gè)鐵釘之間有2個(gè)空隙,…,第8行9個(gè)鐵釘之間有8個(gè)空隙(如圖所示).東方莊家的游戲規(guī)則是:游人在迷尼板上方口放人一球,每玩一次(放入一球就算玩一次)先付給莊家2元.若小球到達(dá)①②③④號(hào)球槽,分別獎(jiǎng)4元、2元、0元、-2元.(一個(gè)玻璃球的滾動(dòng)方式:通過(guò)第1行的空隙向下滾動(dòng),小球碰到第二行居中的鐵釘后以相等的概率滾入第2行的左空隙或右空隙.以后小球按類(lèi)似方式繼續(xù)往下滾動(dòng),落入第8行的某一個(gè)空隙后,最后掉入迷尼板下方的相應(yīng)球槽內(nèi)).恰逢周末,某同學(xué)看了一個(gè)小時(shí),留心數(shù)了數(shù),有80人次玩.試用你學(xué)過(guò)的知識(shí)分析,這一小時(shí)內(nèi)游戲莊家是贏(yíng)是賠? 通過(guò)計(jì)算,你得到什么啟示?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案