在數(shù)列{an}中,如果存在非零常數(shù)T ,使得對于任意的非零自然數(shù) 均成立,那么就稱數(shù)列為周期數(shù)列,其中T 叫數(shù)列的周期。已知數(shù)列滿足 (n≥2),如果,當數(shù)列的周期最小時,該數(shù)列前2012項的和是 ( )
A.670 B.671 C.1341 D.1340
D
【解析】解:題目中給出了新名詞,首先要弄清題意中所說的周期數(shù)列的含義,然后利用這個定義,針對題目中的數(shù)列的周期情況分類討論,從而將a值確定,進而將數(shù)列的前2 010項和確定。解:若其最小周期為1,則該數(shù)列是常數(shù)列,即每一項都等于1,此時a=1,
該數(shù)列的項分別為1,1,0,1,1,0,1,1,0,…,即此時該數(shù)列是以3為周期的數(shù)列;
若其最小周期為2,則有a3=a1,即|a-1|=1,a-1=1或-1,a=2或a=0,又a≠0,故a=2,
此時該數(shù)列的項依次為1,2,1,1,0,…,由此可見,此時它并不是以2為周期的數(shù)列.
綜上所述,當數(shù)列{xn}的周期最小時,其最小周期是3,a=1,又2 010=3×670,
故此時該數(shù)列的前2 010項和是670×(1+1+0)=1340.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源:2010年廣東省佛山市南海區(qū)高考題例研究數(shù)學試卷(文科)(解析版) 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學 來源:2009-2010學年浙江省舟山市七校高三(下)3月聯(lián)考數(shù)學試卷(理科)(解析版) 題型:選擇題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com