(1)(坐標系與參數(shù)方程選做題)直角坐標系x0y中,以原點為極點,x軸的正半軸為極軸建極坐標系,設(shè)點A,B分別在曲線C1(θ為參數(shù))和曲線C2:ρ=2sinθ上,則|AB|的最小值為______
【答案】分析:(1)把曲線的參數(shù)方程化為普通方程,利用圓與圓的位置關(guān)系求出|AB|的最小值.
(2)由于|x+l|+|x-m|的最小值為|m+1|,可得|m+1|>4,由此解得 m的取值范圍.
解答:解:(1)曲線C1(θ為參數(shù))即 (x-3)2+y2=1 表示以M(3,0)為圓心,以1為半徑的圓.
曲線C2:ρ=2sinθ,即 ρ2=2ρsinθ,即 x2+y2=2y,即 x2+(y-1)2=1,表示以N(0,1)為圓心,以1為半徑的圓.
兩圓的圓心距|MN|=,|AB|的最小值為 -2,
故答案為  
(2)由于|x+l|+|x-m|表示數(shù)軸上的點x到-1、m的距離之和,其最小值為|m+1|,若關(guān)于x的不等式|x+l|+|x-m|>4的解集為R,
則有|m+1|>4,解得 m>3或m<-5,
故答案為 (-∞,-5)∪(3,+∞).
點評:本題主要考查把參數(shù)方程化為普通方程的方法,圓與圓的位置關(guān)系,絕對值的意義,絕對值不等式的解法,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

(三選一,考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
(1)(坐標系與參數(shù)方程選做題)在直角坐標系中圓C的參數(shù)方程為
x=1+2cosθ
y=
3
+2sinθ
(θ為參數(shù)),則圓C的普通方程為
(x-1)2+(y-
3
)2=4
(x-1)2+(y-
3
)2=4

(2)(不等式選講選做題)設(shè)函數(shù)f(x)=|2x+1|-|x-4|,則不等式f(x)>2的解集為
{x|x<-7或x>
5
3
}
{x|x<-7或x>
5
3
}

(3)(幾何證明選講選做題) 如圖所示,等腰三角形ABC的底邊AC長為6,其外接圓的半徑長為5,則三角形ABC的面積是
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題:請考生在下列兩題中任選一題作答.若兩題都做,則按做的第一題評閱計分.本題共5分.
(1)(坐標系與參數(shù)方程選做題)若曲線的極坐標方程為ρ=2sinθ+4cosθ,以極點為原點,極軸為x軸正半軸建立直角坐標系,則該曲線的直角坐標方程為
x2+y2-4x-2y=0
x2+y2-4x-2y=0

(2)(不等式選擇題)對于實數(shù)x,y,若|x-1|≤1,|y-2|≤1,則|x-2y+1|的最大值為
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(考生注意:請在下面兩題中任選一題作答,如果都做,則按所做第1題評分)
(1)(坐標系與參數(shù)方程選做題)
曲線C1
x=1+cosθ
y=sinθ
(θ為參數(shù))上的點到曲線C2
x=-2
2
+
1
2
t
y=1-
1
2
t
(t為參數(shù))
上的點的最短距離為
1
1

(2)(幾何證明選講選做題)
如圖,已知:△ABC內(nèi)接于圓O,點D在OC的延長線上,AD是圓O的切線,若∠B=30°,AC=1,則AD的長為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江西)(1)(坐標系與參數(shù)方程選做題)曲線C的直角坐標方程為x2+y2-2x=0,以原點為極點,x軸的正半軸為極軸建立積坐標系,則曲線C的極坐標方程為
ρ=2cosθ
ρ=2cosθ

(2)(不等式選做題)在實數(shù)范圍內(nèi),不等式|2x-1|+|2x+1|≤6的解集為
{x|-
3
2
≤ x≤
3
2
}
{x|-
3
2
≤ x≤
3
2
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題:請考生在下列兩題中任選一題作答,若兩題都做,則按所做的第一題評閱計分.
(1)(坐標系與參數(shù)方程選做題) 在極坐標系下,已知直線l的方程為ρcos(θ-
π
3
)=
1
2
,則點M(1,
π
2
)到直線l的距離為
3
-1
2
3
-1
2

(2)(幾何證明選講選做題) 如圖,P為圓O外一點,由P引圓O的切線PA與圓O切于A點,引圓O的割線PB與圓O交于C點.已知AB⊥AC,PA=2,PC=1.則圓O的面積為
4
4

查看答案和解析>>

同步練習冊答案