已知cos(π+x)=
3
5
,x∈(π,2π)
,則sinx=( 。
A、-
3
5
B、-
4
5
C、
3
5
D、
4
5
分析:由sin2α+cos2α=1及誘導(dǎo)公式可解之.
解答:解:∵cos(π+x)=
3
5
,∴-cosx=
3
5
,即cosx=-
3
5

又x∈(π,2π),∴sinx=-
1-cos2x
=-
4
5
;
故選B.
點評:本題考查誘導(dǎo)公式及同角正余弦關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(x+
π
2
)=
1
2
,則cos2x=
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知 cos(x-
π
4
)=
2
10
,x∈(
π
2
,π)

(I)求sinx的值;
(Ⅱ)求sin(2x+
π
3
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科做)已知cos(x+
π
6
)=
3
5
,x∈(0,π),則sinx的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(x+
π
6
)=
1
4
,則sin(
π
6
-2x)
=
 

查看答案和解析>>

同步練習(xí)冊答案