已知拋物線的頂點在坐標(biāo)原點,焦點為,點是點關(guān)于軸的對稱點,過點的直線交拋物線于兩點。
(1)試問在軸上是否存在不同于點的一點,使得與軸所在的直線所成的銳角相等,若存在,求出定點的坐標(biāo),若不存在說明理由。
(2)若的面積為,求向量的夾角;
(1)存在T(1,0)(2)
【解析】
試題分析:(1)由題意知:拋物線方程為:且 -1分
設(shè)
設(shè)直線代入得
2分
假設(shè)存在滿足題意,則
5分
存在T(1,0) -6分
(2)(法一)
7分
設(shè)直線OA,OB的傾斜角分別為
, 9分
設(shè)
11分
12分
法二:
7分
9分
11分
12分
考點:本題考查了拋物線的方程及直線與拋物線的關(guān)系
點評:解答拋物線綜合題時,應(yīng)根據(jù)其幾何特征熟練的轉(zhuǎn)化為數(shù)量關(guān)系(如方程、函數(shù)),再結(jié)合代數(shù)方法解答,這就要學(xué)生在解決問題時要充分利用數(shù)形結(jié)合、設(shè)而不求、弦長公式及韋達(dá)定理綜合思考,重視對稱思想、函數(shù)與方程思想、等價轉(zhuǎn)化思想的應(yīng)用。
科目:高中數(shù)學(xué) 來源:山東省濟(jì)寧五中2010屆高三5月模擬(理) 題型:填空題
已知拋物線和雙曲線都經(jīng)過點,它們在軸上有共同焦點,拋物線的頂點為坐
標(biāo)原點,則雙曲線的標(biāo)準(zhǔn)方程是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com