【答案】
分析:(I)由已知函數(shù)求導(dǎo)得f′(x)根據(jù)在x=0處取得極值0列出方程即可解得a,b.
(II)由(I)知f(x)=x
2+x-ln(1+x).將方程
轉(zhuǎn)化x
2+x-ln(1+x)-
=0,令H(x)=x
2+x-ln(1+x)-
,再利用導(dǎo)數(shù)研究其單調(diào)性,從而求出m的取值范圍.
(III)由(I)知f(x)=x
2+x-ln(1+x)的定義域?yàn)椋?1,+∞),且f′(x)=
,利用導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系研究其單調(diào)性和最值得出x
2+x≥ln(1+x),進(jìn)而有對(duì)任意正整數(shù)n,取x=
,得到:
,最后分別取n=2,3,…,n,得到n-1個(gè)不等關(guān)系,利用裂項(xiàng)求和法即可證得結(jié)論.
解答:解:(I)由已知得f′(x)=2x+1-
,
∵在x=0處取得極值0,∴f′(0)=0,
f′(0)=0,
解得:a=1,b=0.
(II)由(I)知f(x)=x
2+x-ln(1+x).
則方程
即x
2+x-ln(1+x)-
=0,
令H(x)=x
2+x-ln(1+x)-
,
則方程H(x)=0在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,
∵H′(x)=2x-
-
=
,
∴當(dāng)x∈(0,1)時(shí),H′(x)<0,故H(x)在(0,1)上是減函數(shù);
當(dāng)x∈(1,2)時(shí),H′(x)>0,故H(x)在(1,2)上是增函數(shù);
從而有:
,
∴-
-ln2<m≤1-ln3.
(III)由(I)知f(x)=x
2+x-ln(1+x)的定義域?yàn)椋?1,+∞),
且f′(x)=
,
當(dāng)x∈(-1,0)時(shí),f′(x)<0,故H(x)在(-1,0)上是減函數(shù);
當(dāng)x∈(0,+∞)時(shí),f′(x)<0,故H(x)在(0,+∞)上是增函數(shù);
∴f(0)為f(x)在(-1,+∞)上的最小值,
∴f(x)≥f(0)=0,
故x
2+x≥ln(1+x),其中當(dāng)x=0時(shí)等號(hào)成立,
對(duì)任意正整數(shù)n,取x=
,得
,
∴
,
從而有:
,分別取n=2,3,…,n,得到:
=ln
故
成立.
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究函數(shù)的極值.解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)的合理運(yùn)用,恰當(dāng)?shù)乩昧秧?xiàng)求和法進(jìn)行解題.