16.某高中計(jì)劃從全校學(xué)生中按年級采用分層抽樣方法抽取20名學(xué)生進(jìn)行心理測試,其中高三有學(xué)生900人,已知高一與高二共抽取了14人,則全校學(xué)生的人數(shù)為3000.

分析 設(shè)全校學(xué)生的人數(shù)為n和要抽取的樣本容量,即可求出答案.

解答 解:設(shè)全校學(xué)生的人數(shù)為n,
則$\frac{20}{n}=\frac{20-14}{900}$,
解得n=3000,
故答案為:3000.

點(diǎn)評 分層抽樣的方法步驟為:首先確定分層抽取的個(gè)數(shù).分層后,各層的抽取一定要考慮到個(gè)體數(shù)目,選取不同的抽樣方法,但一定要注意按比例抽取,其中按比例是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知全集U={1,2,3,4,5},集合A={1,3},B={3,4,5},則集合∁U(A∪B)=( 。
A.{1,3,4,5}B.{3}C.{2}D.{4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$(1-x{)^9}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_9}{x^9}$,則|a0|+|a1|+|a2|+…+|a9|=512.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.命題甲x+y≠8;命題乙:x≠2或y≠6,則( 。
A.甲是乙的充分非必要條件
B.甲是乙的必要非充分條件
C.甲是乙的充要條件
D.甲既不是乙的充分條件,也不是乙的必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若集合A={x|x2-2x-3<0},B={x|-2<x<a},則“A∩B≠∅”的充要條件是( 。
A.a>3B.a>-1C.a≥-1D.a≥3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)與g(x)=2x互為反函數(shù),則f(4x-x2)的單調(diào)遞增區(qū)間為( 。
A.(-∞,2]B.(0,2)C.[2,4)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.對于定義域?yàn)镮的函數(shù)y=f(x),如果存在區(qū)間[m,n]⊆I,同時(shí)滿足:
①f(x)在[m,n]內(nèi)是單調(diào)函數(shù);
②當(dāng)定義域是[m,n],f(x)值域也是[m,n],則稱[m,n]是函數(shù)y=f(x)的“好區(qū)間”.
(1)設(shè)g(x)=loga(ax-2a)+loga(ax-3a)(其中a>0且a≠1),求g(x)的定義域并判斷其單調(diào)性;
(2)試判斷(1)中的g(x)是否存在“好區(qū)間”,并說明理由;
(3)已知函數(shù)P(x)=$\frac{({t}^{2}+t)x-1}{{t}^{2}x}$(t∈R,t≠0)有“好區(qū)間”[m,n],當(dāng)t變化時(shí),求n-m 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C的焦點(diǎn)在y軸上,短軸長為2,離心率為$\frac{{\sqrt{3}}}{2}$
(1)求橢圓C的方程;
(2)若直線l過點(diǎn)(0,1),交橢圓C于A,B兩點(diǎn),且OA⊥OB,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.不等式x2(x+2)(x-1)<0的解為(-2,0)∪(0,1).

查看答案和解析>>

同步練習(xí)冊答案