如圖,設(shè)△OEP的面積為S,已知=1.
(1)若,求向量 的夾角θ的取值范圍;
(2)若S=||,且||≥2,當(dāng)||取最小值時,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求以O(shè)為中心,F(xiàn)為一個焦點且經(jīng)過點P的橢圓方程.

【答案】分析:(Ⅰ)令 ,由題設(shè)知 ,∵,∴,由此可求出 的范圍..
(Ⅱ)以O(shè)為原點,OF所在直線為x軸建立直角坐標(biāo)系,并令Q(m,n),則F(c,0),由題設(shè)知 .,.由此知 ,由此入手,當(dāng) 取最小值時,能夠求出橢圓的方程.
解答:解:(Ⅰ)令
,∴,∴,
=
,∵,∴,
∵θ∈[0,π],∴

(Ⅱ)以O(shè)為原點,OF所在直線為x軸建立直角坐標(biāo)系,并令Q(m,n),則F(c,0),
,∴
,

,∴

∵c≥2,
∴當(dāng)c=2時,最小,此時Q( ),
設(shè)橢圓方程為
,
∴a2=10,b2=6.
∴所求橢圓為
點評:本題考查圓錐曲線的性質(zhì)和應(yīng)用,解題時要認(rèn)真審題,仔細(xì)解答,注意積累解題方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,設(shè)△OEP的面積為S,已知
OF
• 
FP
=1.
(1)若
1
2
<S<
3
2
,求向量
OF
FP
 的夾角θ的取值范圍;
(2)若S=
3
4
|
OF
|,且|
OF
|≥2,當(dāng)|
OP
|取最小值時,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求以O(shè)為中心,F(xiàn)為一個焦點且經(jīng)過點P的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:寧夏銀川一中2010屆高三第四次月考、理科數(shù)學(xué)試卷 題型:044

如圖,設(shè)△OFP的面積為S,已知=1.

(1)若<S<,求向量的夾角的取值范圍;

(2)若S=,且≥2,當(dāng)取最小值時,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求以O(shè)為中心,F(xiàn)為一個焦點且經(jīng)過點P的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:模擬題 題型:解答題

如圖,設(shè)△OFP的面積為S,已知=1,
(1)若,求向量的夾角θ的取值范圍;
(2)若S=≥2,當(dāng)取最小值時,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求以O(shè)為中心,F(xiàn)為一個焦點且經(jīng)過點P的橢圓方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省高考數(shù)學(xué)第三輪復(fù)習(xí)精編模擬試卷12(理科)(解析版) 題型:解答題

如圖,設(shè)△OEP的面積為S,已知=1.
(1)若,求向量 的夾角θ的取值范圍;
(2)若S=||,且||≥2,當(dāng)||取最小值時,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求以O(shè)為中心,F(xiàn)為一個焦點且經(jīng)過點P的橢圓方程.

查看答案和解析>>

同步練習(xí)冊答案