函數(shù)f(x)=
x
1-x
(0<x<1)
的反函數(shù)為f-1(x),數(shù)列{an}和{bn}滿足:a1=
1
2
,an+1=f-1(an),函數(shù)y=f-1(x)的圖象在點(n,f-1(n))(n∈N*)處的切線在y軸上的截距為bn
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{
bn
a
2
n
-
λ
an
}
;的項中僅
b5
a
2
5
-
λ
a5
最小,求λ的取值范圍;
(3)令函數(shù)g(x)=[f-1(x)+f(x)]- 
1-x2
1+x2
,0<x<1.數(shù)列{xn}滿足:x1=
1
2
,0<xn<1且xn+1=g(xn),(其中n∈N*).證明:
(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
+…+
(xn+1-xn)2
xnxn+1
2
+1
8
分析:(1)先求出函數(shù)f(x)的反函數(shù)f-1(x)=
x
1+x
(x>0)
an+1=f-1(an)=
an
1+an
,由此能求出數(shù)列{an}的通項公式;
(2)由f-1(x)=
x
1+x
(x>0)
,知[f-1(x)]=
1
(1+x)2
,所以y=f-1(x)在點(n,f-1(n))處的切線方程為y-
n
n+1
=
1
(1+n)2
(x-n)
,由此入手能求出λ的取值范圍.
(3)g(x)=[f-1(x)+f(x)]•
1-x2
1+x2
=[
x
1+x
+
x
1-x
]•
1-x2
1+x2
=
2x
1+x2
,x∈(0,1)
.所以xn+1-xn=xn(1-xn)•
1+xn
x
2
n
+1
,又因0<xn<1,則xn+1>xn.由此入手能夠證明
(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
+…+
(xn+1-xn)2
xnxn+1
2
+1
8
解答:解:(1)令y=
x
1-x
,解得x=
y
1+y
;由0<x<1,解得y>0.
∴函數(shù)f(x)的反函數(shù)f-1(x)=
x
1+x
(x>0)

an+1=f-1(an)=
an
1+an
,
1
an+1
-
1
an
=1

{
1
an
}
是以2為首項,1為公差的等差數(shù)列,故an=
1
n+1
.(4分)

(2)∵f-1(x)=
x
1+x
(x>0)
,∴[f-1(x)]=
1
(1+x)2
,
∴y=f-1(x)在點(n,f-1(n))處的切線方程為y-
n
n+1
=
1
(1+n)2
(x-n)
,
令x=0得bn=
n2
(1+n)2
.∴
bn
a
2
n
-
λ
an
=n2-λ(n+1)=(n-
λ
2
)2-λ-
λ2
4

∵僅當n=5時取得最小值,∴4.5<
λ
2
<5.5

∴λ的取值范圍為(9,11)(8分)

(3)g(x)=[f-1(x)+f(x)]•
1-x2
1+x2
=[
x
1+x
+
x
1-x
]•
1-x2
1+x2
=
2x
1+x2
,x∈(0,1)

所以xn+1-xn=xn(1-xn)•
1+xn
x
2
n
+1

又因0<xn<1,則xn+1>xn(10分)
顯然1>xn+1xnx2
1
2
xn+1-xn=xn(1-xn)•
1+xn
x
2
n
+1
1
4
1
xn+1+
2
xn+1
-2
1
4
1
2
2
-2
=
2
+1
8

(xn+1-xn)2
xnxn+1
=
xn+1-xn
xnxn+1
(xn+1-xn)=(xn+1-xn)(
1
xn
-
1
xn+1
)<
2
+1
8
(
1
xn
-
1
xn+1
)

(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
++
(xn+1-xn)2
xnxn+1
2
+1
8
[(
1
x1
-
1
x2
)+(
1
x2
-
1
x3
)++(
1
xn
-
1
xn+1
)]

=
2
+1
8
(
1
x1
-
1
xn+1
)=
2
+1
8
(2-
1
xn+1
)
(12分)
1
2
xn+1<1
,∴1<
1
xn+1
<2
,∴0<2-
1
xn+1
<1

(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
++
(xn+1-xn)2
xnxn+1
=
2
+1
8
(2-
1
xn+1
)<
2
+1
8
(14分)
點評:本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時要認真審題,仔細解答,注意公式的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=
x1+|x|
,下列結(jié)論正確的是

①f(x)在(-∞,+∞)上不是單調(diào)函數(shù)
②?m∈(0,1),使得方程f(x)=m有兩個不等的實數(shù)解;
③?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個零點;
④?x1,x2∈R,若x1≠x2,則f(x1)≠f(x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•南匯區(qū)二模)三位同學(xué)在研究函數(shù)f(x)=
x
1+|x|
(x∈R) 時,分別給出下面三個結(jié)論:
①函數(shù)f(x)的值域為 (-1,1)
②若x1≠x2,則一定有f(x1)≠f(x2
③若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則fn(x)=
x
1+n|x|
對任意n∈N*恒成立.
你認為上述三個結(jié)論中正確的個數(shù)有
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-
x1+|x|
,則滿足f(2-x2)+f(x)<0的x的取值范圍是
(-1,2)
(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
1-x
(0<x<1)
的反函數(shù)為f-1(x).設(shè)數(shù)列{an}滿足a1=1,an+1=f-1(an)(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)已知數(shù)列{bn}滿足b1=
1
2
bn+1=(1+bn)2f-1(bn)
,求證:對一切正整數(shù)n≥1都有
1
a1+b1
+
1
2a2+b2
+
+
1
nan+bn
<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•揭陽一模)已知函數(shù)f(x)=
αx
1+xα
(x>0,α
為常數(shù)),數(shù)列{an}滿足:a1=
1
2
,an+1=f(an),n∈N*.
(1)當α=1時,求數(shù)列{an}的通項公式;
(2)在(1)的條件下,證明對?n∈N*有:a1a2a3+a2a3a4+…+anan+1an+2=
n(n+5)
12(n+2)(n+3)
;
(3)若α=2,且對?n∈N*,有0<an<1,證明:an+1-an
2
+1
8

查看答案和解析>>

同步練習(xí)冊答案