【題目】設(shè)P是橢圓 上一點,M、N分別是兩圓:(x+4)2+y2=1和(x﹣4)2+y2=1上的點,則|PM|+|PN|的最小值、最大值的分別為( )
A.9,12
B.8,11
C.8,12
D.10,12

【答案】C
【解析】解:首先將P點固定于一處,設(shè)兩圓心分別為C1 , C2 ,
則r1=1,r2=c且C1 , C2為橢圓的焦點,
PC1≤PM+MC1
PC2≤PN+NC2
PM+PN=PM+MC1+PN+NC2﹣(MC1+NC2)≥PC1+PC2﹣(MC1+NC2
=2a﹣(r1+r2
=10﹣2=8
所以,PM+PN的最小值為8.
PM+PN=PM+MC1+PN+NC2﹣(MC1+NC2)≤PC1+PC2+(MC1+NC2
=2a+(r1+r2
=10+2=12.
所以,PM+PN的最大值為12.
故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某老師對全班名學(xué)生學(xué)習(xí)積極性和參加社團(tuán)活動情況進(jìn)行調(diào)查,統(tǒng)計數(shù)據(jù)如下所示:

參加社團(tuán)活動

不參加社團(tuán)活動

合計

學(xué)習(xí)積極性高

學(xué)習(xí)積極性一般

合計

(1)請把表格數(shù)據(jù)補(bǔ)充完整;

(2)若從不參加社團(tuán)活動的人按照分層抽樣的方法選取人,再從所選出的人中隨機(jī)選取兩人作為代表發(fā)言,求至少有一個學(xué)習(xí)積極性高的概率;

(3)運用獨立性檢驗的思想方法分析:請你判斷是否有的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與參與社團(tuán)活動由關(guān)系?

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面給出的關(guān)系式中正確的個數(shù)是(
=
=
2=| |2
④( =
⑤| |≤
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為一簡單組合體,其底面 ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)求證:BE∥平面PDA;
(2)求四棱錐B﹣CEPD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的各項都是正數(shù),且對任意n∈N* , 都有(an﹣1)(an+3)=4Sn , 其中Sn為數(shù)列{an}的前n項和.
(1)求證數(shù)列{an}是等差數(shù)列;
(2)若數(shù)列{ }的前n項和為Tn , 求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)若m=1,求函數(shù)f(x)的定義域.
(2)若函數(shù)f(x)的值域為R,求實數(shù)m的取值范圍.
(3)若函數(shù)f(x)在區(qū)間 上是增函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量
(Ⅰ)若 方向上的投影為 ,求λ的值;
(Ⅱ)命題P:向量 的夾角為銳角;
命題q: ,其中向量 =( )(λ,α∈R).若“p或q”為真命題,“p且q”為假命題,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交警隨機(jī)抽取了途徑某服務(wù)站的40輛小型轎車在經(jīng)過某區(qū)間路段的車速(單位: ),現(xiàn)將其分成六組為后得到如圖所示的頻率分布直方圖.

(1)某小型轎車途經(jīng)該路段,其速度在以上的概率是多少?

(2)若對車速在兩組內(nèi)進(jìn)一步抽測兩輛小型轎車,求至少有一輛小型轎車速度在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要測量底部不能到達(dá)的電視塔AB的高度,在C點測得塔頂A的仰角是45°,在D點測得塔頂A的仰角是30°,并測得水平面上的∠BCD=120°,CD=40m,則電視塔的高度為(
A.40m
B.20m
C.305m
D.(20 ﹣40)m

查看答案和解析>>

同步練習(xí)冊答案