14.設(shè)命題p:函數(shù)y=log2(ax-1)在區(qū)間[1,2]內(nèi)單調(diào)遞增,命題q:“?x∈R,ax2-2ax+3>0”
(1)若命題p為真命題,求實(shí)數(shù)a的取值范圍;
(2)若命題“p∨q”為真命題,命題“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

分析 (1)若命題p為真命題,則t=ax-1在區(qū)間[1,2]內(nèi)單調(diào)遞增且恒為正,解得實(shí)數(shù)a的取值范圍;
(2)若命題“p∨q”為真命題,命題“p∧q”為假命題,則命題p,q一真一假,進(jìn)而可得實(shí)數(shù)a的取值范圍.

解答 解:(1)若命題p為真命題,
即函數(shù)y=log2(ax-1)在區(qū)間[1,2]內(nèi)單調(diào)遞增,
則t=ax-1在區(qū)間[1,2]內(nèi)單調(diào)遞增且恒為正,
即$\left\{\begin{array}{l}a>0\\ a-1>0\end{array}\right.$,
解得:a>1;
(2)若命題q:“?x∈R,ax2-2ax+3>0”為真命題,
則a=0,或$\left\{\begin{array}{l}a>0\\△=4{a}^{2}-12a<0\end{array}\right.$,
解得:0≤a<3,
若命題“p∨q”為真命題,命題“p∧q”為假命題,則命題p,q一真一假,
即$\left\{\begin{array}{l}a>1\\ a<0,或a≥3\end{array}\right.$,或$\left\{\begin{array}{l}a≤1\\ 0≤a<3\end{array}\right.$,
解得:0≤a≤1,或a≥3.

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了全稱命題,復(fù)合函數(shù)的單調(diào)性,復(fù)合命題,對(duì)數(shù)函數(shù)的圖象和性質(zhì)等知識(shí)點(diǎn),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.動(dòng)點(diǎn)P(x,y)滿足$\left\{\begin{array}{l}{2x-y≥0}\\{y≥0}\\{x+y-3≥0}\end{array}\right.$,則z=x+2y的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)動(dòng)點(diǎn)P(x,y)滿足$\left\{\begin{array}{l}{2x+y≤40}\\{x+2y≤50}\\{x≥0}\\{y≥0}\end{array}\right.$,則z=x+y的最大值是( 。
A.10B.30C.20D.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=loga(ax-1),其中a>0,且a≠1.
(1)求證:函數(shù)f(x)的圖象在y軸的一側(cè);
(2)設(shè)A(x1,y1),B(x2,y2)是函數(shù)f(x)的圖象上任意兩個(gè)不同的點(diǎn),且x1<x2,求證:y1<y2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=Asin(2ωx+φ)(ω>0),若f(x+$\frac{π}{6}$)是周期為π的偶函數(shù),則φ的一個(gè)可能值是(  )
A.$\frac{π}{3}$B.$\frac{5π}{6}$C.πD.$\frac{7π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知具有線性相關(guān)的兩個(gè)變量x,y之間的一組數(shù)據(jù)如下:
x01234
y2.24.34.54.86.7
回歸方程是$\widehat{y}$=bx+a,其中b=0.95,a=$\overline{y}$-b$\overline{x}$.則當(dāng)x=6時(shí),y的預(yù)測(cè)值為( 。
A.8.1B.8.2C.8.3D.8.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)y=log2x-1$\sqrt{3x-2}$的定義域是($\frac{2}{3}$,1)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某學(xué)校為了支持生物課程基地研究植物生長(zhǎng),計(jì)劃利用學(xué)?盏亟ㄔ煲婚g室內(nèi)面積為900m2的矩形溫室,在溫室內(nèi)劃出三塊全等的矩形區(qū)域,分別種植三種植物,相鄰矩形區(qū)域之間間隔1m,三塊矩形區(qū)域的前、后與內(nèi)墻各保留 1m 寬的通道,左、右兩塊矩形區(qū)域分別與相鄰的左右內(nèi)墻保留 3m 寬的通道,如圖.設(shè)矩形溫室的室內(nèi)長(zhǎng)為x(m),三塊種植植物的矩形區(qū)域的總面積為S(m2).
(1)求S關(guān)于x的函數(shù)關(guān)系式;
(2)求S的最大值,及此時(shí)長(zhǎng)X的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖是一個(gè)空間幾何體的三視圖,則該空間幾何體的表面積是( 。
A.$({8+2\sqrt{5}})π$B.$({9+2\sqrt{5}})π$C.$({10+2\sqrt{5}})π$D.$({8+2\sqrt{3}})π$

查看答案和解析>>

同步練習(xí)冊(cè)答案