11.對?x∈R,mx2+mx+1>0恒成立,則m的取值范圍是[0,4).

分析 分m=0和m≠0兩種情況討論,當m=0時,原不等式恒成立;當m≠0時,則需$\left\{\begin{array}{l}{m>0}\\{{m}^{2}-4m<0}\end{array}\right.$,求解不等式組得答案.

解答 解:當m=0時,不等式化為1>0恒成立;
當m≠0時,要使對?x∈R,mx2+mx+1>0恒成立,
則$\left\{\begin{array}{l}{m>0}\\{{m}^{2}-4m<0}\end{array}\right.$,解得0<m<4.
綜上,m的取值范圍是[0,4).
故答案為:[0,4).

點評 本題考查命題的真假判斷與應用,考查了恒成立問題的求解方法,體現(xiàn)了分類討論的數(shù)學思想方法,是基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知等差數(shù)列{an} 中,a5=3,a6=-2
(1)求數(shù)列{an}的首項a1和公差d;
(2)求數(shù)列{an}的通項公式an 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知常數(shù)m≠0,n≥2且n∈N,二項式(1+mx)n的展開式中,只有第6項的二項式系數(shù)最大,第三項系數(shù)是第二項系數(shù)的9倍.
(1)求m、n的值;
(2)若記(1+mx)n=a0+a1(x+8)+a2(x+8)2+…+an(x+8)n,求a0-a1+a2-a3+…+(-1)nan除以6的余數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列說法正確的個數(shù)是( 。
①命題“?x∈R,x3-x2+1≤0”的否定是“$?{x_0}∈R,x_0^3-x_0^2+1>0$;
②“$b=\sqrt{ac}$”是“三個數(shù)a,b,c成等比數(shù)列”的充要條件;
③“m=-1”是“直線mx+(2m-1)y+1=0和直線3x+my+2=0垂直”的充要條件:
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知$|{\vec a}|=1$,$|{\vec b}|=2$,$\vec a(\vec a-\vec b)=3$則$\vec a$與$\vec b$的夾角為(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=m-|x-2|,不等式f(x+2)≥0的解集為[-2,2].
(1)求m的值;
(2)若?x∈R,f(x)≥-|x+6|-t2+t恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某同學用“五點法”畫函數(shù)$f(x)=2sin(2x-\frac{π}{3})+1$在區(qū)間[-$\frac{π}{2}$,$\frac{π}{2}$]上的圖象時,列表并填入了部分數(shù)據(jù),如表:
2x-$\frac{π}{3}$-$\frac{4}{3}$π-$\frac{π}{2}$0$\frac{π}{2}$$\frac{2}{3}$π
x-$\frac{π}{2}$-$\frac{π}{3}$-$\frac{π}{12}$$\frac{π}{6}$$\frac{5π}{12}$$\frac{π}{2}$
f(x)
(1)請將上表數(shù)據(jù)補充完整,并在給出的直角坐標系中,畫出f(x)在區(qū)間[-$\frac{π}{2}$,$\frac{π}{2}$]上的圖象;
(2)求f(x)的最小值及取最小值時x的集合;
(3)求f(x)在$x∈[0,\frac{π}{2}]$時的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.某幾何體的三視圖如圖所示,該幾何體的體積為8π+$\frac{64}{3}$,,其表面積為8π+16+16$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.若函數(shù)y=f(x),x∈D,對任意的x1∈D,總存在x2∈D,使得f(x1)•f(x2)=1,則稱函數(shù)f(x)具有性質(zhì)M.
(1)判斷函數(shù)y=2x和y=log2x是否具有性質(zhì)M,說明理由;
(2)若函數(shù)y=log8(x+2),x∈[0,t]具有性質(zhì)M,求t的值;
(3)若函數(shù)y=$\frac{{{x^2}+ax+9}}{{{x^2}-ax+9}}$(a≠0)在實數(shù)集R上具有性質(zhì)M,求a的取值范圍.

查看答案和解析>>

同步練習冊答案