設(shè)平面內(nèi)有n條直線(n≥3),其中有且僅有兩條直線互相平行,任意三條直線不過(guò)同一點(diǎn).若用f(n)表示這n條直線交點(diǎn)的個(gè)數(shù),則f(4)=( 。  當(dāng)n>4時(shí),f(n)=( 。
分析:首先由圖可得f(4)的值,進(jìn)而逐一給出f(3),f(4),…,的值,分析可得從n-1條直線增加為n條直線時(shí),交點(diǎn)的數(shù)目會(huì)增加n-1,即f(n)=f(n-1)+n-1,然后利用數(shù)列求和的辦法計(jì)算可得答案.
解答:解:如圖,4條直線有5個(gè)交點(diǎn),故f(4)=5,
由f(3)=2,
f(4)=f(3)+3

分析可得,從n-1條直線增加為n條直線時(shí),交點(diǎn)的數(shù)目會(huì)增加n-1,
f(n)=f(n-1)+n-1,
累加可得f(n)=2+3+…+(n-2)+(n-1)
=
(n-2)(n-1+2)
2

=
(n-2)(n+1)
2

故選D.
點(diǎn)評(píng):本題考查歸納推理的運(yùn)用,注意運(yùn)用數(shù)列的性質(zhì)來(lái)發(fā)現(xiàn)其中的規(guī)律,并進(jìn)行計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)平面內(nèi)有n條直線(n≥3),其中有且僅有兩條直線互相平行,任意三條直線不過(guò)同一點(diǎn),若用f(n)表示這n條直線交點(diǎn)個(gè)數(shù),則f(4)=
 
,當(dāng)n>4時(shí)f(n)=
 
(用n表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)平面內(nèi)有n條直線(n≥3),其中有且僅有兩條直線互相平行,任意三條直線不過(guò)同一點(diǎn).若用f(n)表示這n條直線交點(diǎn)的個(gè)數(shù),f(n)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)設(shè)平面內(nèi)有n條直線(n≥3)其中有且僅有兩條直線互相平行,任意三條直線不過(guò)同一點(diǎn),若用f(n)表示這n條直線交點(diǎn)的個(gè)數(shù),則f(4)=
5
5
,當(dāng)n>4時(shí),f(n)=
(n-2)(n+1)
2
(n-2)(n+1)
2
(用n表示).
(2)如圖:若射線OM,ON上分別存在點(diǎn)M1,M2與點(diǎn)N1,N2,則三角形面積之比
S△OM1N1
S△OM2 N2
=
OM1
OM2
=
ON1
ON2
,若不在同一平面內(nèi)的射線OP,OQ和OR上分別存在點(diǎn)P1P2,點(diǎn)Q1Q2和點(diǎn)R1R2,則
VO-P1Q1R1
VO-P2Q2R2 
=
OP1•OQ1•OR1
OP2•OQ2•OR2
OP1•OQ1•OR1
OP2•OQ2•OR2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)平面內(nèi)有n條直線(n≥3,n∈N*),其中有且僅有兩條直線互相平行,任意三條直線不過(guò)同一點(diǎn).若用f(n)表示這n條直線交點(diǎn)的個(gè)數(shù),則f(4)=
5
5
;當(dāng)n≥3時(shí),f(n)=
(n-2)(n+1)
2
(n-2)(n+1)
2
.(用含n的數(shù)學(xué)表達(dá)式表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案