【題目】如圖,在四棱錐中,為正三角形,四邊形ABCD為直角梯形,//,平面平面ABCD,點(diǎn)E,F分別為AD,CP的中點(diǎn),.
(1)證明:直線//平面PAB;
(2)求直線EF與平面PBC所成角的正弦值.
【答案】(1)證明見(jiàn)詳解;(2).
【解析】
(1)取中點(diǎn)為,構(gòu)造過(guò)的平面,由面面平行推證線面平行即可;
(2)取中點(diǎn)為,過(guò)作,找出二面角的平面角,再解三角形即可.
(1)取中點(diǎn)為,連接,如下圖所示:
在中,
因?yàn)?/span>分別是兩邊的中點(diǎn),
故可得//;
在梯形中,
因?yàn)?/span>分別是兩腰的中點(diǎn),
故可得//;
又因?yàn)?/span>平面,且,
平面,且,
故可得平行//,
又因?yàn)?/span>平面,
故可得//平面,即證.
(2)取中點(diǎn)為,連接,
過(guò)作,連接,如下圖所示:
因?yàn)?/span>是等邊三角形,且為中點(diǎn),
故可得;
因?yàn)槠矫?/span>平面,且兩平面交于,
故可得平面.
又因?yàn)?/span>平面,
故可得;
又因?yàn)樘菪?/span>是直角梯形,//,
故可得;
又因?yàn)?/span>平面,且交于點(diǎn),
故可得平面,又因?yàn)?/span>平面,
故可得;又,
且平面,且交于點(diǎn),
故可得平面,則即為所求線面角.
在梯形中,
因?yàn)?/span>,且
故可得;
在中,
;;
故可得斜邊上的高線;
在中,
;;
故可得斜邊上的中線;
綜上所述:在中,
,,
故可得.
故直線EF與平面PBC所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,曲線的極坐標(biāo)方程是,直線的參數(shù)方程是(為參數(shù)).
(1)若,是圓上一動(dòng)點(diǎn),求點(diǎn)到直線的距離的最小值和最大值;
(2)直線與關(guān)于原點(diǎn)對(duì)稱(chēng),且直線截曲線的弦長(zhǎng)等于,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線過(guò)橢圓的右焦點(diǎn),且交橢圓于A,B兩點(diǎn),線段AB的中點(diǎn)是,
(1)求橢圓的方程;
(2)過(guò)原點(diǎn)的直線l與線段AB相交(不含端點(diǎn))且交橢圓于C,D兩點(diǎn),求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是拋物線:的焦點(diǎn),點(diǎn)為拋物線的對(duì)稱(chēng)軸與其準(zhǔn)線的交點(diǎn),過(guò)作拋物線的切線,切點(diǎn)為,若點(diǎn)恰好在以,為焦點(diǎn)的雙曲線上,則雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】環(huán)境問(wèn)題是當(dāng)今世界共同關(guān)注的問(wèn)題,我國(guó)環(huán)?偩指鶕(jù)空氣污染指數(shù)濃度,制定了空氣質(zhì)量標(biāo)準(zhǔn):
空氣污染質(zhì)量 | ||||||
空氣質(zhì)量等級(jí) | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
某市政府為了打造美麗城市,節(jié)能減排,從2010年開(kāi)始考查了連續(xù)六年11月份的空氣污染指數(shù),繪制了頻率分布直方圖,經(jīng)過(guò)分析研究,決定從2016年11月1日起在空氣質(zhì)量重度污染和嚴(yán)重污染的日子對(duì)機(jī)動(dòng)車(chē)輛限號(hào)出行,即車(chē)牌尾號(hào)為單號(hào)的車(chē)輛單號(hào)出行,車(chē)牌尾號(hào)為雙號(hào)的車(chē)輛雙號(hào)出行(尾號(hào)為字母的,前13個(gè)視為單號(hào),后13個(gè)視為雙號(hào)).
(1)某人計(jì)劃11月份開(kāi)車(chē)出行,求因空氣污染被限號(hào)出行的概率;
(2)該市環(huán)保局為了調(diào)查汽車(chē)尾氣排放對(duì)空氣質(zhì)量的影響,對(duì)限行三年來(lái)的11月份共90天的空氣質(zhì)量進(jìn)行統(tǒng)計(jì),其結(jié)果如表:
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
天數(shù) | 16 | 39 | 18 | 10 | 5 | 2 |
根據(jù)限行前六年180天與限行后90天的數(shù)據(jù),計(jì)算并填寫(xiě)列聯(lián)表,并回答是否有的把握認(rèn)為空氣質(zhì)量的優(yōu)良與汽車(chē)尾氣的排放有關(guān).
空氣質(zhì)量?jī)?yōu)良 | 空氣質(zhì)量污染 | 合計(jì) | |
限行前 | |||
限行后 | |||
合計(jì) |
參考數(shù)據(jù):
其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù),,若函數(shù)有4個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù)在處的切線方程為,函數(shù).
(1)求函數(shù)的解析式;
(2)求函數(shù)的極值;
(3)設(shè)(表示p,q中的最小值),若在上恰有三個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】每逢節(jié)日,電商之間的價(jià)格廝殺已經(jīng)不是什么新鮮事,今年的6月18日也不例外.某電商在6月18日之后,隨機(jī)抽取100名顧客進(jìn)行回訪,按顧客的年齡分成6組,得到如下頻數(shù)分布表:
顧客年齡 | ||||||
頻數(shù) | 4 | 24 | 32 | 20 | 16 | 4 |
(1)在下表中作出這些數(shù)據(jù)的頻率分布直方圖;
(2)用分層抽樣的方法從這100名顧客中抽取25人,再?gòu)某槿〉?/span>25人中隨機(jī)抽取2人,求年齡在內(nèi)的顧客人數(shù)的分布列、數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知自變量為的函數(shù)的極大值點(diǎn)為,,為自然對(duì)數(shù)的底數(shù).
(1)若,證明:有且僅有2個(gè)零點(diǎn);
(2)若,,,…,為任意正實(shí)數(shù),證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com