6.如圖,將無蓋正方體紙盒展開,直線AB,CD在原正方體中的位置關(guān)系是( 。
A.平行B.相交成60°C.相交且垂直D.異面直線

分析 將正方體的展開圖還原為正方體,得到對應(yīng)的A,B,C,D,判斷AB,CD的位置關(guān)系.

解答 解:將正方體還原得到A,B,C,D的位置如圖
因?yàn)閹缀误w是正方體,所以連接AC,得到三角形ABC是等邊三角形,所以∠ABC=60°;
故選:B.

點(diǎn)評(píng) 本題考查了學(xué)生的空間想象能力以及正方體的性質(zhì).關(guān)鍵是將平面圖形還原為幾何體.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$f(x)=alnx+\frac{{2{a^2}}}{x}+x({a∈R})$.
(1)當(dāng)a=1時(shí),討論函數(shù)y=f(x)的單調(diào)性;
(2)若對任意m,n∈(0,2)且m≠n,有$\frac{f(m)-f(n)}{m-n}<1$恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知b>0,log3b=a,log6b=c,3d=6,則下列等式成立的是( 。
A.a=2cB.d=acC.a=cdD.c=ad

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE,BD∩AC=G.
(1)求證:AE⊥平面BCE;
(2)求三棱錐E-ADC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某校100名學(xué)生期中考試語文成績的頻率分布直方圖如下圖所示,其中成績分組區(qū)間是[50,60),[60,70),[70,80),[80,90),[90,100].
(Ⅰ)求圖中a的值;
(Ⅱ)若這100名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如表所示,求數(shù)學(xué)成績在[50,90)之外的人數(shù).
分?jǐn)?shù)段[50,60)[60,70)[70,80)[80,90)
x:y1:12:13:44:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知直線l1:3x-y+2=0,l2:x+my-3=0,若l1∥l2,則m的值等于-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,△ADP是等腰直角三角形,∠APD是直角,AB⊥AD,AB=1,$AD=2,AC=CD=\sqrt{5}$.
(Ⅰ)求直線PB與平面PCD所成角的正弦值;
(Ⅱ)求平面PCD與平面PAB所成二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)是定義在R上的奇函數(shù),且在[0,+∞)上是增函數(shù),則f(x+1)≥0的解集為(  )
A.(-∞,-1]B.(-∞,1]C.[-1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知點(diǎn)A(-1,2),B(1,3),則向量$\overrightarrow{AB}$的坐標(biāo)為(2,1).

查看答案和解析>>

同步練習(xí)冊答案