以雙曲線的一個(gè)焦點(diǎn)為圓心,離心率為半徑的圓的方程是( )
A.(x-2)2+y2=4
B.x2+(y-2)2=2
C.(x-2)2+y2=2
D.x2+(y-2)2=4
【答案】分析:先求出雙曲線的焦點(diǎn)坐標(biāo)和離心率,從而得到圓坐標(biāo)和圓半徑,進(jìn)而得到圓的方程.
解答:解:雙曲線的焦點(diǎn)坐標(biāo)是(0,-2)和(0,2),離心率為e=2.
所以所求圓的圓心坐標(biāo)是(0,-2)或(0,2),半徑r=2,
∴所求圓的方程為x2+(y+2)2=4或x2+(y-2)2=4.
故選D.
點(diǎn)評(píng):本題考查雙曲線的性質(zhì)和圓的方程,解題時(shí)要熟練掌握基礎(chǔ)知識(shí),注意公式的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省高三下學(xué)期第二次聯(lián)考文數(shù)學(xué)試卷(解析版) 題型:選擇題

以雙曲線的一個(gè)焦點(diǎn)為圓心,離心率為半徑的圓的方程是(     )

A.         B.

C.         D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

以雙曲線數(shù)學(xué)公式的一個(gè)焦點(diǎn)為圓心,離心率為半徑的圓的方程是


  1. A.
    (x-2)2+y2=4
  2. B.
    x2+(y-2)2=2
  3. C.
    (x-2)2+y2=2
  4. D.
    x2+(y-2)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年北京市豐臺(tái)區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:選擇題

以雙曲線的一個(gè)焦點(diǎn)為圓心,離心率為半徑的圓的方程是( )
A.(x-2)2+y2=4
B.x2+(y-2)2=2
C.(x-2)2+y2=2
D.x2+(y-2)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:云南省2010-2011學(xué)年高三數(shù)學(xué)一輪復(fù)習(xí)測(cè)試:解析幾何 題型:選擇題

 [番茄花園1]  以雙曲線的一個(gè)焦點(diǎn)為圓心,離心率為半徑的圓的方程是  

A.          B.

C.                      D.

 


 [番茄花園1]4.

查看答案和解析>>

同步練習(xí)冊(cè)答案