【題目】已知一塊邊長(zhǎng)為4的正方形鋁板(如圖),請(qǐng)?jiān)O(shè)計(jì)一種裁剪方法,用虛線標(biāo)示在答題卡本題圖中,通過(guò)該方案裁剪,可焊接做成一個(gè)密封的正四棱柱(底面是正方形且側(cè)棱垂于底面的四棱柱),且該四棱柱的全面積等于正方形鋁板的面積(要求裁剪的塊數(shù)盡可能少,不計(jì)焊接縫的面積),則該四棱柱外接球的體積為________.

【答案】

【解析】

將正方形甲按圖中虛線剪開(kāi),以兩個(gè)正方形為底面,四個(gè)長(zhǎng)方形為側(cè)面,焊接成一個(gè)底面邊長(zhǎng)為2,高為1的正四棱柱.該四棱柱外接球的半徑.由此能求出該四棱柱外接球的體積.

解:將正方形按圖中虛線剪開(kāi),

以兩個(gè)正方形為底面,四個(gè)長(zhǎng)方形為側(cè)面,

焊接成一個(gè)底面邊長(zhǎng)為2,高為1的正四棱柱

底面為邊長(zhǎng)為2的正方形,

該四棱柱外接球的半徑

該四棱柱外接球的體積為:

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某保險(xiǎn)公司為客戶定制了5個(gè)險(xiǎn)種:甲,一年期短險(xiǎn);乙,兩全保險(xiǎn);丙,理財(cái)類保險(xiǎn);丁,定期壽險(xiǎn):戊,重大疾病保險(xiǎn),各種保險(xiǎn)按相關(guān)約定進(jìn)行參保與理賠.該保險(xiǎn)公司對(duì)5個(gè)險(xiǎn)種參?蛻暨M(jìn)行抽樣調(diào)查,得出如下的統(tǒng)計(jì)圖例,以下四個(gè)選項(xiàng)錯(cuò)誤的是(

A.54周歲以上參保人數(shù)最少B.1829周歲人群參保總費(fèi)用最少

C.丁險(xiǎn)種更受參保人青睞D.30周歲以上的人群約占參保人群的80%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為梯形,,點(diǎn)的中點(diǎn),且,點(diǎn)上,且.

1)求證:平面;

2)若平面平面,,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若圓錐的內(nèi)切球(球面與圓錐的側(cè)面以及底面都相切)的半徑為1,當(dāng)該圓錐體積取最小值時(shí),該圓錐體積與其內(nèi)切球體積比為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).設(shè)的交點(diǎn)為,當(dāng)變化時(shí),的軌跡為曲線

1)求的普通方程;

2)設(shè)為圓上任意一點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20202月,全國(guó)掀起了“停課不停學(xué)”的熱潮,各地教師通過(guò)網(wǎng)絡(luò)直播、微課推送等多種方式來(lái)指導(dǎo)學(xué)生線上學(xué)習(xí).為了調(diào)查學(xué)生對(duì)網(wǎng)絡(luò)課程的熱愛(ài)程度,研究人員隨機(jī)調(diào)查了相同數(shù)量的男、女學(xué)生,發(fā)現(xiàn)有的男生喜歡網(wǎng)絡(luò)課程,有的女生不喜歡網(wǎng)絡(luò)課程,且有的把握但沒(méi)有的把握認(rèn)為是否喜歡網(wǎng)絡(luò)課程與性別有關(guān),則被調(diào)查的男、女學(xué)生總數(shù)量可能為(

附:,其中.

k

A.130B.190C.240D.250

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】冠狀病毒是一個(gè)大型病毒家族,己知可引起感冒以及中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重疾病.而今年出現(xiàn)的新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見(jiàn)體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴(yán)重病例中,感染可導(dǎo)致肺炎、嚴(yán)重急性呼吸綜合征、腎衰竭,甚至死亡.某醫(yī)院為篩查冠狀病毒,需要檢驗(yàn)血液是否為陽(yáng)性,現(xiàn)有份需檢驗(yàn)血液.

1)假設(shè)這份需檢驗(yàn)血液有且只有一份為陽(yáng)性,從中依次不放回的抽取份血液,已知前兩次的血液均為陰性,求第次出現(xiàn)陽(yáng)性血液的概率;

2)現(xiàn)在對(duì)份血液進(jìn)行檢驗(yàn),假設(shè)每份血液的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是獨(dú)立的,據(jù)統(tǒng)計(jì)每份血液是陽(yáng)性結(jié)果的概率為,現(xiàn)在有以下兩種檢驗(yàn)方式:方式一:逐份檢驗(yàn);方式二:混合檢驗(yàn),將份血液分別取樣混合在一起檢驗(yàn)(假設(shè)血液混合后不影響血液的檢驗(yàn)).若檢驗(yàn)結(jié)果為陰性,則這份血液全為陰性,檢驗(yàn)結(jié)束;如果檢驗(yàn)結(jié)果為陽(yáng)性,則這份血液中有為陽(yáng)性的血液,為了明確這份血液究竟哪幾份為陽(yáng)性,就要對(duì)這份再逐份檢驗(yàn).從檢驗(yàn)的次數(shù)分析,哪一種檢驗(yàn)方式更好一些,并說(shuō)明理由.參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓M,直線l)過(guò)定點(diǎn)N,點(diǎn)P是圓M上的任意一點(diǎn),線段的垂直平分線和相交于點(diǎn)Q,當(dāng)點(diǎn)P在圓M上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡為曲線C.

1)求曲線C的方程;

2)直線lCAB兩點(diǎn),D,B關(guān)于x軸對(duì)稱,直線x軸交于點(diǎn)E,且點(diǎn)D為線段的中點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求曲線在點(diǎn)處的切線方程;

2)若函數(shù)有兩個(gè)極值點(diǎn),,且不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案