設(shè)α,β為兩個(gè)不重合的平面,m,n為兩條不重合的直線,給出下列四個(gè)命題:
①若m⊥n,m⊥α,n?α則n∥α;
②若α⊥β,α∩β=m,n?α,n⊥m,則n⊥β;
③若m⊥n,m∥α,n∥β,則α⊥β;
④若n?α,m?β,α與β相交且不垂直,則n與m不垂直.
其中所有真命題的序號(hào)是   
【答案】分析:根據(jù)線面平行的判定方法,我們可判斷①的真假,根據(jù)面面垂直的性質(zhì)定理,我們易判斷②的正誤,根據(jù)面面垂直的判定方法及定義,我們可以判斷命題③的真假,根據(jù)線線垂直的定義及面面相交的幾何特征,我們可以判斷④的對(duì)錯(cuò),進(jìn)而得到答案.
解答:解:若m⊥n,m⊥α,則n?α或n∥α,又由n?α則n∥α,故①為真命題;
若α⊥β,α∩β=m,n?α,n⊥m,則由面面垂直的性質(zhì)定理我們易得到n⊥β,故②也為真命題;
若m⊥n,m∥α,則n與α可能平行也可能相交,再由n∥β,則α與β也可能平行也可能相交,故③為假命題;
若n?α,m?β,α與β相交且不垂直,當(dāng)m,n中一條與交線平行,一條與交線垂直時(shí),n⊥m,故④為假命題;
故答案為:①②
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是平面與平面垂直的判定,直線與平面平行的判定,直線與平面垂直的判定,熟練掌握這些定理及定義,熟練掌握空間線面關(guān)系的幾何特征是解答此類(lèi)問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、設(shè)a,b為兩個(gè)不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若a∥b,l⊥a,則l⊥b;②若m⊥a,n⊥a,m∥b,n∥b,則a∥b;③若l∥a,l⊥b,則a⊥b;④若m、n是異面直線,m∥a,n∥a,且l⊥m,l⊥n,則l⊥a.
其中真命題的序號(hào)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省高一下學(xué)期期末考試數(shù)學(xué)卷 題型:填空題

設(shè)ab為兩個(gè)不重合的平面,lm,n為兩兩不重合的直線,給出下列四個(gè)命題:

①若ab,lÌa,則lb

②若mÌa,nÌamb,nb,則ab; 

③若la,lb,則ab;

④若m、n是異面直線,ma,na,且lmln,則la.

其中真命題的序號(hào)是____★____

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:南京模擬 題型:單選題

設(shè)a,b為兩個(gè)不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若ab,l⊥a,則l⊥b;②若m⊥a,n⊥a,mb,nb,則ab;③若la,l⊥b,則a⊥b;④若m、n是異面直線,ma,na,且l⊥m,l⊥n,則l⊥a.
其中真命題的序號(hào)是( 。
A.①③④B.①②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都市石室中學(xué)高三(上)9月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)a,b為兩個(gè)不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若a∥b,l⊥a,則l⊥b;②若m⊥a,n⊥a,m∥b,n∥b,則a∥b;③若l∥a,l⊥b,則a⊥b;④若m、n是異面直線,m∥a,n∥a,且l⊥m,l⊥n,則l⊥a.
其中真命題的序號(hào)是( )
A.①③④
B.①②③
C.①③
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年江蘇省南京市高三3月調(diào)研數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)a,b為兩個(gè)不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若a∥b,l⊥a,則l⊥b;②若m⊥a,n⊥a,m∥b,n∥b,則a∥b;③若l∥a,l⊥b,則a⊥b;④若m、n是異面直線,m∥a,n∥a,且l⊥m,l⊥n,則l⊥a.
其中真命題的序號(hào)是( )
A.①③④
B.①②③
C.①③
D.②④

查看答案和解析>>

同步練習(xí)冊(cè)答案