A. | (-1,+∞) | B. | (-1,0) | C. | (-2,+∞) | D. | (-2,0) |
分析 求出g(x)的導數,問題等價于存在x>1,2ax3-3ax2-2bx+b=0成立,求出$\frac{a}$=$\frac{{2x}^{3}-{3x}^{2}}{2x-1}$,設u(x)=$\frac{{2x}^{3}-{3x}^{2}}{2x-1}$(x>1),根據函數的單調性求出$\frac{a}$的范圍即可.
解答 解:∵g(x)=(ax-$\frac{x}$-2a)ex,
∴g′(x)=($\frac{{x}^{2}}$+ax-$\frac{x}$-a)ex,
∴由g(x)+g′(x)=0,整理得2ax3-3ax2-2bx+b=0.
存在x>1,使g(x)+g′(x)=0成立,
等價于存在x>1,2ax3-3ax2-2bx+b=0成立,
∵a>0,∴$\frac{a}$=$\frac{{2x}^{3}-{3x}^{2}}{2x-1}$,
設u(x)=$\frac{{2x}^{3}-{3x}^{2}}{2x-1}$(x>1),
則u′(x)=$\frac{8x{[(x-\frac{3}{4})}^{2}+\frac{3}{16}]}{{(2x-1)}^{2}}$,
∵x>1,∴u′(x)>0恒成立,
∴u(x)在(1,+∞)上是增函數,
∴u(x)>u(1)=-1,
∴$\frac{a}$>-1,即$\frac{a}$的取值范圍為(-1,+∞),
故選:A.
點評 本題考查了函數的單調性問題,考查導數的應用以及轉化思想,是一道中檔題.
科目:高中數學 來源: 題型:選擇題
A. | [-1,1] | B. | (-1,1) | C. | (-∞,-1]∪[1,+∞) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | y=-2x+1 | B. | $y=\frac{x}{1-x}$ | C. | $y={log_{\frac{1}{2}}}(x-1)$ | D. | y=-(x-1)2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|0≤x<1} | B. | {x|0<x≤1} | C. | {x|x<0} | D. | R |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com