曲線y=x3-2x+1在點(diǎn)(1,2)處的切線方程是( 。
A、y=x+1B、y=-x+1C、y=2x-2D、y=-2x+2
分析:求出原函數(shù)的導(dǎo)函數(shù),得到x=1時(shí)的導(dǎo)數(shù),直接由點(diǎn)斜式得到切線方程.
解答:解:由曲線y=x3-2x+1,得y′=3x2-2,
∴y′|x=1=1.
∴曲線y=x3-2x+1在點(diǎn)(1,2)處的切線方程是y-2=1×(x-1),
整理得:y=x+1.
故選:A.
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)處的切線方程,關(guān)鍵是明確在點(diǎn)處還是過某點(diǎn),是易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、若曲線y=x3-2x+a與直線y=x+1相切,則常數(shù)a的值為
-1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x3-2x+4在點(diǎn)(1,3)處的切線的傾斜角為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x3-2x在點(diǎn)(1,-1)處的切線方程是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=-x3+2x在點(diǎn)(-1,-1)處的切線的傾斜角是
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)曲線y=x3-2x+4在點(diǎn)(1,3)處的切線為l,則直線l與坐標(biāo)軸圍成的三角形面積為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案